DIFFUSION KURTOSIS IMAGING METRICS AS NON-INVASIVE BIOMARKERS IN BRAIN GLIOMA GRADING

Igor Pronin*,1 A. Tonoyan1, F. Grinberg2,3, E. Farrher2, I. Maximov2, L. Shishkina1, N. Zakharova1, E. Shults1, N. Shah2,3, A. Potapov1

*Academician of Russian Academy of Sciences
1Burdenko Neurosurgery Institute, 125047, Moscow, Russia
2Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
3Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
\hspace{1cm} e-mail: eshults@nsi.ru

Abstract: DKI parameters exhibit higher sensitivity and specificity in discriminating between various glioma’s grades than the DTI parameters, exhibiting higher sensitivity to microstructural changes occurring during malignancy progression. DKI provides valuable non-invasive biomarkers in assessment of gliomas and has been shown to be a useful supplement to other modern neuroimaging methods. This is the first time when kurtosis anisotropy (KA) was applied in glioma grade differentiation.

Keywords: glioma, diffusion, tumor, kurtosis, WHO grade.

Abbreviations

MD – mean diffusivity
AD – axial diffusivity
RD – radial diffusivity
FA – fractional anisotropy
RA – relative anisotropy
MK – mean kurtosis
AK – axial kurtosis
RK – radial kurtosis
KA – kurtosis anisotropy
LGG – low grade gliomas (including grades I and II)
HGG – high grade gliomas (including grades III and IV)
CNAWM – contralateral normal appearing white matter
NAWM – normal appearing white matter
ROI – region of interest
DKI – diffusion kurtosis imaging
DTI – diffusion tensor imaging
WI – weighted images
WHO – World Health Organisation
CNS – central nervous system
1. Introduction

Gliomas are one of the most frequently found types of human brain tumours and comprise about 50% of all primary brain tumours in adults. Gliomas cover a broad range of lesions of different aetiology and malignancy. The World Health Organisation (WHO) classification of tumours in the central nervous system (CNS) allows one to subdivide the large amount of CNS tumours into 4 groups according to their malignancy degree [1] and, based on that, forecast their biological activity. The WHO grade of the tumour as well as its location and lesion features visualised by neuroimaging, the age of the patient, his neurological status, radicality of surgical resection and proliferation indices of the tumour are all extremely important in predicting the outcome of surgery, chemotherapy, radiation treatment, and for a survival rate [1]. Glioma grading is mainly based on histological and immunohistochemical features of the tumour such as nuclear atypia, vessel endothelial cell proliferation, mitotic activity and the presence of necrosis [1]. The histopathological examination of tissue requires invasive manipulations, for example, a surgery or biopsy with concomitant risks. Therefore, it is important to analyse and apply new methods in frame of the preoperative assessment of the tumour grade in order to prevent avoidable invasive interventions.

Diffusion tensor imaging (DTI) has proven to be a valuable tool in glioma grading. However, reports on sensitivity and specificity of diffusion scalar metrics in the detection of cellular changes related to the malignant progression obtained by different authors have been controversial [2-7]. DTI is based on the simplified assumption of the Gaussian diffusion of water molecules in brain tissue, which appears valid only in the low range of diffusion weightings (so called \(b \)-values), i.e., \(b < 1000 \text{ s/mm}^2 \). Water diffusion in biological tissue is restricted and hindered due to the presence of different compartments, cell membranes, intracellular organelles, axons, etc., giving rise to deviations from the Gaussian diffusion at higher \(b \)-values. Diffusion kurtosis imaging (DKI) is a novel modality in diffusion MRI which allows one to assess the non-Gaussianity of molecular diffusion at higher \(b \)-values in biological tissue [8].

Only a few works investigating the use of DKI in the grading of brain gliomas have been published so far [4, 6, 9, 10]. In general, an important finding of these works was that diffusion kurtosis parameters provide very promising novel biomarkers for differentiation between the low and high grade gliomas. However, these innovative studies also suffered form certain methodological limitations. Firstly, the size of patient groups used in the analysis was relatively small (about 28-35 subjects [4, 6, 9] including both low and high tumour grades). Therefore, the reported findings are to be confirmed by the independent studies using larger subject groups for higher statistical reliability. Secondly, most of the attention in the analysis was given to the mean kurtosis (MK) [4, 6, 9], whereas other DKI scalar metrics, such as axial (AK) and radial (RK) diffusional kurtoses, potentially useful in assessment of microstructural changes, have been additionally considered in one work [6] only. Thirdly, a more detailed differentiation between glioma grades have been studied with very low group sizes, such as 5 grade II
astrocytomas, 13 grade III astrocytomas, and 16 grade IV glioblastomas [4], while other authors [6, 9] have roughly compared low and high grade gliomas.

The goal of our work was to study the benefits of DKI in assessment of glioma malignancy using the large group of patients (n=84) and with a significantly improved statistical power of the study design in comparison to previous works. We were also able to more reliably differentiate between gliomas-III and gliomas-IV cases within the same HGG group, as well as between gliomas-II and gliomas-III. We therefore could estimate advantages of novel DKI biomarkers in assessing microstructural changes that underlie the tumour malignancy progression.

Several DKI metrics used in this work, namely, AK, RK, and kurtosis anisotropy (KA), were applied to discriminate between LGG and gliomas-III, and between gliomas-III and gliomas-IV for the first time. In difference to the previous works [4, 6, 9], we also took a more rigorous approach to specify the regions-of-interest (ROIs): only glioma regions with the maximal MK were included in the analysis assuming that these regions reveal the highest malignancy. We believe that this is a more advanced approach better corresponding to the pathomorphology of the tumour and making the statistical analysis less vulnerable to tumour’s spatial heterogeneity.

2. Methods

The study was approved by the institutional ethic committee. Written, informed consent was obtained from all patients. In general, 84 patients with supratentorial gliomas were enrolled in this study. All patients have undergone imaging at the Burdenko Neurosurgery Institute where they have later been treated. All gliomas were newly diagnosed, i.e. prior to any radiation, surgery or chemotherapy. Patients with other oncologic history were excluded from the study. All patients underwent tumour removal in 1-2 weeks after undergoing DKI. The diagnoses of glioma and tumour grade were confirmed at histology and immunohistochemical examination in all cases by a neuropathomorphologist (X.X.X. with 25 years of experience).

According to the generally accepted approach [1], HGG include grade III (gliomas-III) and grade IV gliomas (gliomas-IV) and LGG include grade I (gliomas-I) and grade II gliomas (gliomas-II). This study included 49 patients with HGG (29 gliomas-IV and 20 gliomas-III) and 35 patients with LGG (32 gliomas-II and 3 gliomas-I). The group of patients with gliomas-IV consisted of 28 patients with glioblastomas and one patient with gliosarcoma. The group of patients with gliomas-III consisted of 15 patients with anaplastic astrocytomas, one patient with anaplastic oligodendroglioma and 4 patients with anaplastic oligoastrocytoma. The group of patients with gliomas-I consisted of 15 patients with anaplastic astrocytoma, one patient with anaplastic oligodendroglioma and 4 patients with anaplastic oligoastrocytoma. The group of patients with gliomas-II consisted of 23 patients with diffuse fibrillary astrocytomas, 7 patients with oligoastrocytomas, and 2 patients with oligodendrogliomas. The group of patients with gliomas-I consisted of 1 patient with papillary glioneuronal tumour, 1 patient with subependimal giant cell astrocytoma and one patient with dysembryoplasticneuroepithelialtumour.
This study included 47 male and 37 female patients in the age range from 18 to 59 years old (average age for HGG - 43.8±14.7, for LGG - 37.7±9.6 years old).

All patients underwent DKI with a 3T MRI scanner using a diffusion weighted spin-echo echo-planar imaging sequence (DW-SE-EPI). Protocol parameters included: three b-values (0, 1000 and 2500 s/mm²) and 60 diffusion gradient directions for each non-zero b-value; repetition time, TR = 10000 ms; echo-time, TE = 103.4 ms; field-of-view, FOV = 240×240 mm²; matrix-size 80×80 with interpolation to 256×256; slice thickness = 3 mm; intersection gap = 0 mm; number of slices = 32; number of excitations, NEX = 1. DKI was acquired in the axial plane, with an acquisition time of 22 minutes. Additionally, anatomic reference images consisting of axial T2-weighted images (TR = 4300 ms; TE = 85 ms; turbo factor = 21; FOV = 240×240 mm; matrix-size = 512×512; slice thickness = 3 mm; intersection gap = 0 mm; NEX = 2); T2-FLAIR-weighted images (TR = 9500 ms; TE = 120 ms; inversion time, TI = 2250 ms; FOV = 240×240 mm; matrix = 352×325; slice thickness = 5 mm; intersection gap = 0 mm; NEX = 1) were acquired before the gadolinium (Gd) contrast agent administration and T1-weighted images (TR = 875 ms; TE = 85 ms; FOV = 240×240 mm; matrix-size = 384×384, slice thickness = 3 mm, intersection gap = 0 m; NEX = 2) were acquired before and after Gd contrast agent administration (0.1 mmol/kg).

Prior to the assessment of the DKI metrics, diffusion data were corrected for eddy-current distortions and head motion using the FSL toolkit [11] and the diffusion gradient directions were corrected accordingly using in-house Matlab scripts [12] (Matlab, The MathWorks, Natick, MA, USA). Bias due to background noise was reduced using the power-images method [13, 14]. The following DTI/DKI parameters were evaluated as described elsewhere [15] using the ExploreDTI toolkit [16]: mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA), relative anisotropy (RA), mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), kurtosis anisotropy (KA). In order to avoid outliers the REKINDL approach was used [17].

Regions of interest (ROI) were manually drawn by two trained neuroradiologists (A.S.T. with 5 years of experience and I.N.P., with 29 years of experience) on the MK maps around the solid tumour parts (Figs. 1-3) and the contralateral normal-appearing white matter (CNAWM) (Fig. 2d) using ITK-SNAP [18] (http://www.itksnap.org/pmwiki/pmwiki.php) in accordance with anatomic reference MR images. Afterward, the ROIs were automatically mapped to other DKI metrics. Cystic, hemorrhagic and necrotic tumour components, peritumoral brain oedema were excluded from the ROIs.

An important issue to take into account is that most of the gliomas become frequently more malignant along time [19]. Moreover, glial tumours often have heterogeneous structure, including different malignant grade areas simultaneously. According to pathomorphology, the most malignant region of the glioma determines its grade, while the tumor may include regions of lower malignancy. As shown by several authors [4, 6], MK increases significantly with higher glioma grade. Here, we assumed that the glioma regions with maximal MK values correspond to the most malignant regions of the tumour. Therefore, in order to
provide higher reliability of our analysis, the ROIs in MK maps included the brightest regions in glioma areas (Figs. 1-3). Areas of tumour infiltration into the brain tissue were excluded from the ROIs, since brain tissue remainders in a tumor can erroneously increase tumour kurtosis and anisotropy values and decrease diffusivity (Fig.1).

In order to reduce inter-subject variations [20-23], diffusion metrics from tumour regions were normalized with respect to the corresponding parameters measured in the CNAWM. As an example, the normalized MK values were evaluated as MK (tumour) / MK (CNAWM). The same procedure was used for all other parameters (Fig. 2) [24, 25].

Absolute and normalized DTI/DKI parameters were compared between HGG and LGG, LGG and gliomas-III, gliomas-III and gliomas-IV using the Mann-Whitney test. The statistical significance threshold was $p < 0.05$. Receiver operating characteristic (ROC) curves were generated for all absolute and normalized diffusion parameters to assess the area under curve (AUC) of the ROC and to determine the optimum parameter threshold in each group.

3. Results

The results of the comparison of DTI/DKI parameters between HGG and LGG are shown in Table 1. All absolute and normalized diffusion parameters, except for absolute KA, FA, RA and normalized FA and RA, significantly differ between HGG and LGG ($p < 0.05$). AUC of the ROC was the highest for the normalized MK values (0.956). The highest sensitivity and specificity were found for the normalized MK (88.57% and 87.76%, respectively).

The results of the comparison of DTI/DKI parameters between gliomas-III and gliomas-IV are shown in Table 2. All absolute and normalized diffusion parameters, except for FA and RA, differ significantly between gliomas-III and gliomas-IV ($p < 0.05$). AUC of the ROC was the highest for normalized MK (0.946). The highest sensitivity and specificity were found for absolute MK (90.00 and 89.66%, respectively) and normalized MK (90.00 and 89.66%, respectively).

The results of the comparison of DTI/DKI parameters between LGG and gliomas-III are shown in Table 3. The absolute values of MK, AK, RK and the normalized values of MK, AK, RK, and RD differ significantly between LGG and gliomas-III ($p < 0.05$). AUC of the ROC was the highest for the normalized values of MK (0.896). The highest sensitivity and specificity were found for normalized values of MK (80.00% and 80.00%, respectively).

4. Discussion

There is a large number of published works regarding the application of DTI in glioma grading [2, 4-6, 9, 26-43]. It is already well established that MD decreases with higher glioma grade [4, 6, 9, 26, 29, 30, 32, 35, 39]. In many studies it was also shown that both, absolute [9, 26] and normalized [6] values of MD are significantly lower in HGG than in LGG. Additionally, it was found that the absolute and normalized MD values differ significantly between anaplastic
astrocytomas and glioblastomas [4]. A correlation between minimal MD and glioma malignancy was also observed [29, 30, 32, 35, 39], i.e., minimal MD values were significantly lower in HGG than in LGG [30, 32, 35], in gliomas-IV than in gliomas-III [29, 39], in gliomas-III than in gliomas-II [30, 39] and in HGG than in gliomas-II [30, 39]. Minimal normalized MD values have been shown to differ significantly between gliomas-II and gliomas-III, gliomas-II and gliomas-IV, gliomas-II and HGG [39], LGG and HGG [30, 35].

In spite of a large amount of works, one can still find some controversy in the literature regarding the correlation between MD and glioma malignancy. Several authors suggested that MD is not consistently helpful in differentiating among glioma grades [28, 31, 34, 37, 43]. It has been shown that differences in MD [5, 6, 36-38] and minimal MD [36] between HGG and LGG were non-significant. Other authors found that minimal MD is not suitable for differentiating between anaplastic astrocytoma and glioblastoma [29, 32].

Some other works [39, 42] made use of AD and RD in glioma grading. The absolute values of minimal AD and RD and normalized values of minimal RD differed significantly between gliomas-II and gliomas-III, gliomas-II and gliomas-IV, gliomas-II and HGG [39], while the normalized minimal AD values differed significantly between gliomas-II, gliomas-III and gliomas-IV [39]. Also AD and RD differed significantly between HGG and LGG [42].

Furthermore, it has been demonstrated that FA differs significantly between HGG and LGG [26, 27, 31, 33, 36]. Absolute and normalized values of minimal FA were significantly lower in gliomas-IV than in gliomas-III [39], while maximal FA was significantly lower in LGG than in HGG [36]. It has been shown that if the density of the tumour cells is the same in both contrast enhancing and nonenhancing regions of gliomas, FA values are higher in the nonenhancing area due to the remaining white matter fibres [33]. Some authors believe that FA significantly differs between gliomas-II and gliomas-III only in the peripheral tumour region, while in the central tumour region FA values are almost the same. This is due to a complete destruction of neural fibres in the centre of both lesions [2]. However, analysis based on the correlation of FA with glioma malignancy is also ambiguous. Some authors did not find any significant differences of FA values between glioma grades [2, 4-6, 27, 33, 38-40, 42]. This might be due to the fact that the most of HGG arise from LGG [44].

In general, disagreements among the published reports can rise up, among others, due to the differences in the data acquisition protocols and post-processing methods [25]. Another essential affecting factor is the delineation of ROIs used for evaluation of the diffusion parameters.

Regarding the use of DKI parameters in grading of brain gliomas, only a few studies have been published so far [4, 6, 9, 10]. It was reported that the absolute MK, AK, RK values and the normalized MK and RK values were significantly higher in the case of HGG than in LGG, while the normalized AK values did not differ significantly between these two groups [6]. According to other authors, the absolute and normalized MK values differed significantly between grade-II, grade-III and grade-IV gliomas [4].
It is well known that gliomas tend to progress to a higher malignancy grade with time [1]. This is often the reason of their heterogeneity given that the same tumour may have regions with different malignancy grades [19]. According to pathomorphology [1], the true malignancy grade of a tumour is determined via its most malignant regions. That is why in the present study, in contrast to previous publications [4, 6, 9, 10], we assumed that the group comparisons based on the most malignant glioma regions should be more efficient. We based our approach on the assumption that the highest MK values correspond to the most malignant tumour areas [4, 6, 9, 10]. Therefore, our ROIs included only the tumour areas with the highest MK. Cystic, hemorrhagic and necrotic tumour components, peritumoral edema, tumour regions with brain tissue remainders were excluded from the ROIs. Diffusion in cystic and necrotic tumour components is close to isotropic Gaussian. It is characterised by low diffusional kurtosis (mean, axial and radial) and anisotropy (kurtosis, fractional and relative), and high diffusivity (mean, axial and radial). Peritumoral oedema and tumour regions containing remainders of brain white matter also exhibit different diffusion and anisotropy characteristics in comparison to the central solid glioma areas due to the presence of neural fibres [2, 33].

Our results demonstrated consistency with previously published studies and demonstrated an increase of the absolute and normalized MK, AK, RK, KA, FA and RA values, and a decrease of the absolute and normalized MD, AD and RD values with higher malignancy grade. The increase in kurtosis metrics (MK, AK and RK) and the decrease in diffusion metrics (MD, AD and RD) with higher glioma grade is supposed to be due to the increase of the tumour cell density and the decrease of the cell size accompanied by the decrease of the intercellular space and the increase of endothelial proliferation, i.e., the factors that restrict and hinder molecular propagation. In general, gliomas with isotropically homogenous distribution of cell density tend to exhibit low anisotropy values (KA, FA and RA) compared to white matter, which has high anisotropy due to the coherent alignment of neural fibres. However, KA, FA, and RA increase with higher glioma grade, which could be explained by the decrease of the extracellular fluid volume and appearance of diffusion directionality in the extracellular space. A comparison of KA, FA and RA with other diffusion parameters and anatomic T1- and T2-weighted images revealed remainders of white matter in the investigated gliomas (Fig. 1). So that the anisotropy alone is not an objective parameter to grade the glioma malignancy, because the remainder of a small amount of white matter will affect FA, RA and KA regardless of the tumor malignancy grade.

Our results demonstrate that diffusion kurtosis parameters (MK, AK and RK) are able to differentiate LGG from HGG, gliomas-III from gliomas-IV, LGG form gliomas-III with higher sensitivity and specificity than diffusion tensor parameters (MD, AD and RD). This is due to the fact that diffusion kurtosis metrics take into account the non-Gaussian molecular diffusion in biological tissues and thus better capture its microstructural complexity, in particular, the changes associated with glioma malignancy. According to the results of our work, normalization of diffusion metrics in tumours with respect to CNAWM improves...
the differentiation between glioma grades, in consistency with previous studies [4, 6].

More than 90% of glioblastomas are primary in origin [19]. Their solid component microstructure is quite homogeneous and significantly differentiates from gliomas-III. However, most of the gliomas-III form as a consequence of focal anaplasia of gliomas-II [19]. These features suggest that the similarity between histological microstructure of gliomas-II and gliomas-III is higher than between gliomas-III and gliomas-IV. We believe that this is the reason of higher sensitivity and specificity of diffusion parameters in differentiating between gliomas-III and gliomas-IV, than in differentiating between LGG and gliomas-III.

DKI requires the acquisition of at least two nonzero b-values and at least 15 diffusion gradient directions. Therefore the acquisition time is longer compared with DTI that requires at least only one nonzero b-value and only 6 gradient directions [45, 46]. However, due to progress in hardware and software development during the last years, DKI became a clinically feasible method. DKI allows acquiring both the diffusion tensor and the diffusion kurtosis parameters during the same scanning session. Moreover, DKI provides b value–independent and more accurate diffusion tensor parameters (MD, AD, RD, FA and RA) compared with DTI [47, 48].

The general limitation of grading tumours using non-invasive imaging methods is that the ROIs used to delineate the tumour areas do not necessarily coincide with the portions of the tumour sent to pathomorphological examination after surgery. This is a source of hardly avoidable discrepancies between the imaging methods and histology. However, since grading the tumours during the pathomorphological examination is performed according to the most malignant portions of the exercised tissue, we believe that the advanced approach exploited in our work, i.e. delineating the ROIs based on the highest diffusion kurtosis, provides the promising means to improve the correspondence between the both methods.

5. Conclusion

In this study we demonstrate significant differences in diffusion kurtosis and diffusion tensor metrics between LGG and gliomas-III, gliomas-III and gliomas-IV, LGG and HGG. Diffusion kurtosis parameters allow one to distinguish between the grades of different groups of gliomas with higher sensitivity and specificity than diffusion tensor parameters. In particular, kurtosis metrics have higher sensitivity for the detection of microstructural changes occurring during tumour anaplasia. DKI technique provides a number of novel non-invasive biomarkers in grading brain gliomas. It is therefore a useful complimentary method in modern neuroimaging and tumour treatment.

Acknowledgement. Burdenko Neurosurgery Institute gratefully acknowledges a support by the Russian Scientific Foundation (RSF) grant № 14-15-00197. IIM thanks DFG (Deutsche Forschungsgemeinschaft) grant (SU 192/32-1) for a partial support.
Pathology

Fig. 1. Diffuse astrocytoma WHO grade-II, without signal enhancement after Gd administration: a) DKI scalar metrics, b) T1-weighted image with Gd enhancement, c) T2-weighted image. The ROI includes the most homogeneous area of the tumour (a). Tumour areas with remainders of brain tissue (see arrows on T1-w (b) and T2-w (c)) are excluded from the ROI because they can contribute to the artificial increase of the kurtosis (MK, RK and AK) and anisotropy values (FA, RA and KA) and the decrease of diffusivity values (MD, RD and AD) (a).
Fig. 2. Anaplastic astrocytoma WHO grade-III of the frontal lobe: a) DKI scalar metrics, b) T2-weighted image, c) T1-weighted image with Gd-enhancement, d) the ROIs around the tumour and the contralateral normal appearing white matter on MK maps. Local mild tumour-enhancement is shown (see the arrow in c). The ROI includes the tumour area with the maximal MK values which is supposed to correspond to the maximal malignancy, although it does not fully correspond to the signal enhancement after Gd administration (a).
Fig. 3. Glioblastoma WHO grade-IV: a) DKI scalar metrics, b) T1-weighted image with Gd-enhancement, c) T2-weighted image. The ROI includes a solid fraction of the tumour with maximal MK supposed to correspond to the maximal malignancy (a). Peritumoral oedema and necrosis are excluded from the ROI (a).
Table 1. Differentiation between HGG and LGG.

<table>
<thead>
<tr>
<th>Diffusion parameters</th>
<th>p-threshold</th>
<th>AUC ROC</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Optimal threshold</th>
<th>HGG Mean</th>
<th>HGG SD</th>
<th>LGG Mean</th>
<th>LGG SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td><0.001</td>
<td>0.925</td>
<td>82.86</td>
<td>83.67</td>
<td>0.479</td>
<td>0.794</td>
<td>0.257</td>
<td>0.467</td>
<td>0.141</td>
</tr>
<tr>
<td>AK</td>
<td><0.001</td>
<td>0.910</td>
<td>82.86</td>
<td>81.63</td>
<td>0.461</td>
<td>0.692</td>
<td>0.192</td>
<td>0.441</td>
<td>0.127</td>
</tr>
<tr>
<td>RK</td>
<td><0.001</td>
<td>0.916</td>
<td>85.71</td>
<td>85.71</td>
<td>0.489</td>
<td>0.839</td>
<td>0.299</td>
<td>0.485</td>
<td>0.156</td>
</tr>
<tr>
<td>KA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.068</td>
<td>0.041</td>
<td>0.049</td>
<td>0.025</td>
</tr>
<tr>
<td>MD (10^{-2} mm2/s)</td>
<td><0.001</td>
<td>0.817</td>
<td>74.29</td>
<td>75.51</td>
<td>0.156</td>
<td>0.127</td>
<td>0.047</td>
<td>0.178</td>
<td>0.038</td>
</tr>
<tr>
<td>AD (10^{-2} mm2/s)</td>
<td><0.001</td>
<td>0.818</td>
<td>77.14</td>
<td>75.51</td>
<td>0.165</td>
<td>0.141</td>
<td>0.052</td>
<td>0.198</td>
<td>0.040</td>
</tr>
<tr>
<td>RD (10^{-2} mm2/s)</td>
<td><0.001</td>
<td>0.818</td>
<td>74.29</td>
<td>75.51</td>
<td>0.144</td>
<td>0.120</td>
<td>0.045</td>
<td>0.168</td>
<td>0.037</td>
</tr>
<tr>
<td>FA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.113</td>
<td>0.049</td>
<td>0.110</td>
<td>0.050</td>
</tr>
<tr>
<td>RA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.066</td>
<td>0.029</td>
<td>0.064</td>
<td>0.030</td>
</tr>
<tr>
<td>nMK</td>
<td><0.001</td>
<td>0.956</td>
<td>88.57</td>
<td>87.76</td>
<td>0.505</td>
<td>0.885</td>
<td>0.266</td>
<td>0.494</td>
<td>0.139</td>
</tr>
<tr>
<td>nAK</td>
<td><0.001</td>
<td>0.913</td>
<td>82.86</td>
<td>81.63</td>
<td>0.760</td>
<td>1.094</td>
<td>0.320</td>
<td>0.692</td>
<td>0.189</td>
</tr>
<tr>
<td>nRK</td>
<td><0.001</td>
<td>0.950</td>
<td>85.71</td>
<td>85.71</td>
<td>0.410</td>
<td>0.758</td>
<td>0.270</td>
<td>0.396</td>
<td>0.126</td>
</tr>
<tr>
<td>nKA</td>
<td><0.005</td>
<td>0.739</td>
<td>65.52</td>
<td>64.87</td>
<td>0.173</td>
<td>0.340</td>
<td>0.244</td>
<td>0.202</td>
<td>0.109</td>
</tr>
<tr>
<td>nMD</td>
<td><0.001</td>
<td>0.852</td>
<td>80.00</td>
<td>79.59</td>
<td>1.489</td>
<td>1.210</td>
<td>0.427</td>
<td>1.806</td>
<td>0.391</td>
</tr>
<tr>
<td>nAD</td>
<td><0.001</td>
<td>0.813</td>
<td>74.29</td>
<td>75.51</td>
<td>1.173</td>
<td>1.004</td>
<td>0.351</td>
<td>1.432</td>
<td>0.327</td>
</tr>
<tr>
<td>nRD</td>
<td><0.001</td>
<td>0.861</td>
<td>80.00</td>
<td>79.59</td>
<td>1.800</td>
<td>1.394</td>
<td>0.529</td>
<td>2.157</td>
<td>0.497</td>
</tr>
<tr>
<td>nFA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.390</td>
<td>0.211</td>
<td>0.310</td>
<td>0.144</td>
</tr>
<tr>
<td>nRA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.379</td>
<td>0.213</td>
<td>0.295</td>
<td>0.142</td>
</tr>
</tbody>
</table>
Table 2. Differentiation between gliomas-III and gliomas-IV.

<table>
<thead>
<tr>
<th>Diffusion parameters</th>
<th>p-threshold</th>
<th>AUC ROC</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Optimal threshold</th>
<th>Gliomas-III Mean</th>
<th>SD</th>
<th>Gliomas-IV Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td><0.001</td>
<td>0.914</td>
<td>90.00</td>
<td>89.66</td>
<td>0.773</td>
<td>0.580</td>
<td>0.215</td>
<td>0.941</td>
<td>0.165</td>
</tr>
<tr>
<td>AK</td>
<td><0.001</td>
<td>0.903</td>
<td>85.00</td>
<td>86.21</td>
<td>0.693</td>
<td>0.538</td>
<td>0.171</td>
<td>0.799</td>
<td>0.121</td>
</tr>
<tr>
<td>RK</td>
<td><0.001</td>
<td>0.903</td>
<td>85.00</td>
<td>86.21</td>
<td>0.802</td>
<td>0.602</td>
<td>0.231</td>
<td>1.003</td>
<td>0.220</td>
</tr>
<tr>
<td>KA</td>
<td><0.001</td>
<td>0.792</td>
<td>71.43</td>
<td>73.91</td>
<td>0.053</td>
<td>0.045</td>
<td>0.024</td>
<td>0.083</td>
<td>0.043</td>
</tr>
<tr>
<td>MD (10⁻² mm²/s)</td>
<td><0.001</td>
<td>0.840</td>
<td>75.00</td>
<td>75.86</td>
<td>0.117</td>
<td>0.163</td>
<td>0.051</td>
<td>0.102</td>
<td>0.021</td>
</tr>
<tr>
<td>AD (10⁻² mm²/s)</td>
<td><0.001</td>
<td>0.864</td>
<td>80.00</td>
<td>79.31</td>
<td>0.130</td>
<td>0.182</td>
<td>0.056</td>
<td>0.113</td>
<td>0.022</td>
</tr>
<tr>
<td>RD (10⁻² mm²/s)</td>
<td><0.001</td>
<td>0.829</td>
<td>70.00</td>
<td>72.41</td>
<td>0.109</td>
<td>0.154</td>
<td>0.050</td>
<td>0.096</td>
<td>0.020</td>
</tr>
<tr>
<td>FA</td>
<td>>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.114</td>
<td>0.051</td>
<td>0.112</td>
<td>0.048</td>
</tr>
<tr>
<td>RA</td>
<td>>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.067</td>
<td>0.030</td>
<td>0.066</td>
<td>0.029</td>
</tr>
<tr>
<td>nMK</td>
<td><0.001</td>
<td>0.946</td>
<td>90.00</td>
<td>89.66</td>
<td>0.831</td>
<td>0.650</td>
<td>0.193</td>
<td>1.048</td>
<td>0.170</td>
</tr>
<tr>
<td>nAK</td>
<td><0.001</td>
<td>0.903</td>
<td>85.00</td>
<td>86.21</td>
<td>1.047</td>
<td>0.857</td>
<td>0.264</td>
<td>1.257</td>
<td>0.245</td>
</tr>
<tr>
<td>nRK</td>
<td><0.001</td>
<td>0.900</td>
<td>85.00</td>
<td>82.76</td>
<td>0.714</td>
<td>0.530</td>
<td>0.158</td>
<td>0.915</td>
<td>0.212</td>
</tr>
<tr>
<td>nKA</td>
<td><0.001</td>
<td>0.792</td>
<td>71.43</td>
<td>73.91</td>
<td>0.236</td>
<td>0.195</td>
<td>0.078</td>
<td>0.435</td>
<td>0.269</td>
</tr>
<tr>
<td>nMD</td>
<td><0.001</td>
<td>0.840</td>
<td>75.00</td>
<td>75.86</td>
<td>1.181</td>
<td>1.543</td>
<td>0.450</td>
<td>0.981</td>
<td>0.206</td>
</tr>
<tr>
<td>nAD</td>
<td><0.001</td>
<td>0.864</td>
<td>80.00</td>
<td>79.31</td>
<td>0.944</td>
<td>1.279</td>
<td>0.374</td>
<td>0.816</td>
<td>0.161</td>
</tr>
<tr>
<td>nRD</td>
<td><0.001</td>
<td>0.829</td>
<td>70.00</td>
<td>72.41</td>
<td>1.304</td>
<td>1.780</td>
<td>0.563</td>
<td>1.129</td>
<td>0.293</td>
</tr>
<tr>
<td>nFA</td>
<td>>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.379</td>
<td>0.214</td>
<td>0.399</td>
<td>0.213</td>
</tr>
<tr>
<td>nRA</td>
<td>>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.366</td>
<td>0.216</td>
<td>0.388</td>
<td>0.214</td>
</tr>
</tbody>
</table>
Table 3. Differentiation between LGG and gliomas-III.

<table>
<thead>
<tr>
<th>Diffusion parameters</th>
<th>p-threshold</th>
<th>AUC ROC</th>
<th>Sensitivity(%)</th>
<th>Specificity(%)</th>
<th>Optimal threshold</th>
<th>Gliomas-III Mean</th>
<th>LGG Mean</th>
<th>Gliomas-III SD</th>
<th>LGG SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>0.03</td>
<td>0.807</td>
<td>68.57</td>
<td>70.00</td>
<td>0.428</td>
<td>0.580</td>
<td>0.215</td>
<td>0.467</td>
<td>0.141</td>
</tr>
<tr>
<td>AK</td>
<td>0.02</td>
<td>0.801</td>
<td>74.29</td>
<td>75.00</td>
<td>0.418</td>
<td>0.538</td>
<td>0.171</td>
<td>0.441</td>
<td>0.127</td>
</tr>
<tr>
<td>RK</td>
<td><0.05</td>
<td>0.811</td>
<td>68.57</td>
<td>70.00</td>
<td>0.438</td>
<td>0.602</td>
<td>0.231</td>
<td>0.485</td>
<td>0.156</td>
</tr>
<tr>
<td>KA</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.045</td>
<td>0.024</td>
<td>0.049</td>
<td>0.025</td>
</tr>
<tr>
<td>MD (10⁻² mm²/s)</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.163</td>
<td>0.051</td>
<td>0.178</td>
<td>0.038</td>
</tr>
<tr>
<td>AD (10⁻² mm²/s)</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.182</td>
<td>0.056</td>
<td>0.198</td>
<td>0.040</td>
</tr>
<tr>
<td>RD (10⁻² mm²/s)</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.154</td>
<td>0.050</td>
<td>0.168</td>
<td>0.037</td>
</tr>
<tr>
<td>FA</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.114</td>
<td>0.051</td>
<td>0.110</td>
<td>0.050</td>
</tr>
<tr>
<td>RA</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.067</td>
<td>0.030</td>
<td>0.064</td>
<td>0.030</td>
</tr>
<tr>
<td>nMK</td>
<td><0.001</td>
<td>0.896</td>
<td>80.00</td>
<td>80.00</td>
<td>0.478</td>
<td>0.650</td>
<td>0.193</td>
<td>0.494</td>
<td>0.139</td>
</tr>
<tr>
<td>nAK</td>
<td>0.01</td>
<td>0.761</td>
<td>71.43</td>
<td>70.00</td>
<td>0.689</td>
<td>0.857</td>
<td>0.264</td>
<td>0.692</td>
<td>0.189</td>
</tr>
<tr>
<td>nRK</td>
<td>0.002</td>
<td>0.884</td>
<td>77.14</td>
<td>75.00</td>
<td>0.384</td>
<td>0.530</td>
<td>0.158</td>
<td>0.396</td>
<td>0.126</td>
</tr>
<tr>
<td>nKA</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.195</td>
<td>0.078</td>
<td>0.202</td>
<td>0.109</td>
</tr>
<tr>
<td>nMD</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.543</td>
<td>0.450</td>
<td>1.806</td>
<td>0.391</td>
</tr>
<tr>
<td>nAD</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.279</td>
<td>0.374</td>
<td>1.432</td>
<td>0.327</td>
</tr>
<tr>
<td>nRD</td>
<td>0.02</td>
<td>0.703</td>
<td>65.71</td>
<td>65.00</td>
<td>1.997</td>
<td>1.780</td>
<td>0.563</td>
<td>2.157</td>
<td>0.497</td>
</tr>
<tr>
<td>nFA</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.379</td>
<td>0.214</td>
<td>0.310</td>
<td>0.144</td>
</tr>
<tr>
<td>nRA</td>
<td>>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.366</td>
<td>0.216</td>
<td>0.295</td>
<td>0.142</td>
</tr>
</tbody>
</table>
References

41. Wieshmann U.C., Clark C.A., Symms M.R., Franconi F., Barker G.J.,
Shorvon S.D., Reduced anisotropy of water diffusion in structural cerebral
abnormalities demonstrated with diffusion tensor imaging, Magnetic
42. Yuan W., Holland S.K., Jones B.V., Crone K., Mangano F.T.,
Characterization of abnormal diffusion properties of supratentorial brain
tumors: a preliminary diffusion tensor imaging study, Journal of
43. Zimmerman R.D., Is there a role for diffusion-weighted imaging in
patients with brain tumors or is the "bloom off the rose"? AJNR American
44. Budde M.D., Xie M., Cross A.H., Song S.K., Axial diffusivity is the
primary correlate of axonal injury in the experimental autoimmune
encephalomyelitis spinal cord: a quantitative pixelwise analysis, The
Journal of Neuroscience: the Official Journal of the Society for
45. Hui E.S., Cheung M.M., Qi L., Wu E.X., Towards better MR
characterization of neural tissues using directional diffusion kurtosis
experimental design for diffusion kurtosis imaging, IEEE Transactions on
47. Veraart J., Poot D.H., Van Hecke W. et al., More accurate estimation of
diffusion tensor parameters using diffusion Kurtosis imaging. Magnetic
Resonance in Medicine / Society of Magnetic Resonance in Medicine
48. Veraart J., Van Hecke W., Sijbers J., Constrained maximum likelihood
estimation of the diffusion kurtosis tensor using a Rician noise model,
Magnetic Resonance in Medicine: Official Journal of the Society of
Magnetic Resonance in Medicine / Society of Magnetic Resonance in