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Abstract.  In recent years, a new area of plant biology, the so-called plant phenomics, has been rapidly 

progressing and allowing for non-invasive, fast and high-throughput analysis of the plant physiological 

parameters by their phenotype. It uses modern knowledge of biology, information technology and 

engineering solutions for deep digital analysis of phenotypes. The impulse for the development of digital 

phenotyping was the creation of new types of sensors that are sensitive to various regions of the 

electromagnetic spectrum, as well as methods of processing and obtaining meaningful information from 

them. The introduction of RGB, NIR, hyperspectral and other cameras make it possible to obtain 

physiologically significant information for individual organs, entire plants and their populations both in 

laboratory and in the field. Computer vision and machine learning technologies allow highly automated 

analysis of datasets, excluding the human factor, and revealing previously unknown features of plant 

growth, development, regulation and stress reactions.  
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1.    Introduction 

 

Phenomics is a new field of knowledge between biology, bioengineering and 

programming, aiming at the analysis of phenotypes (phenotyping), their formation 

during the ontogenesis and modifications in response to environmental factors (Fiorani 

and Schurr, 2013). Phenomics of plants is of particular interest, as plants are 

characterised by an exceptional variety of phenotypic manifestations. The major focus 

of plant phenomics is digital phenotyping, quantification and deep analysis of 

morphological and physiological traits of plants during development, senescence, 

response to damages and stresses. An automated high-throughput phenotyping 

automatically processes much more data than any classical physiological technique. It 

generates massive and informative datasets on size, shape, biochemical and 

physiological parameters of individual plants and populations (Walter et al., 2015). 

Plant phenomics helps to establish previously unknown patterns of plant functional 

physiology and regulation (Li et al., 2014). Recent combination of plant phenomics 

with other omics sciences, such as genomics, proteomics and metabolomics allows to 

discover new fundamental principles of plant organisation and physiology (Großkinsky 

et al., 2018; van Bezouw et al., 2019).Such complex but tightly regulated processes as 

leaf senescence (Kim et al., 2016), transcriptional regulations of genes involved in 

protein synthesis and cell wall metabolism (Baute et al., 2016), metabolomic changes of 
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tomatoes under the action of plant-derived protein hydrolysates (Paul et al., 2019) have 

been studied in detail owing to introduction of multi-omics approach. 

Phenomics is one of the modern branches of experimental biology, although it is 

based on the principles and approaches that were historically used by people. The 

evolution of human species is closely connected to agriculture development, 

domestication of animals and cultivation of plants, the history of which, according to 

various estimates, goes back from 9000 to 11000 years (Houle et al., 2010). Ancestors 

selected plants based on specific characteristics.For example, people chose bigger and 

brighter fruit. With human development, the approach to finding food becomes more 

meaningful: plants with higher yields, resistance, and nutritional value were selected 

and cultivated. As a result, valuable plant organisms accumulated useful internals 

(beneficial features, useful qualities) over time (Johannsen, 2014). The development of 

human civilisation depended to a large extent on continuous improvement of breeding 

and detailed selection of highly effective phenotypes of agricultural plants. These were 

the first stages of phenotyping – the classification and selection of plants with a given 

phenotype (the indicated phenotype). During the era of systematics (18-19th centuries), 

plant phenotypes were classified to make a division on taxons. Before the invention of 

methods and approaches of genetics, cytology, molecular and cell biology, etc. selection 

was based directly on the assessment of phenotyping characteristics accessible to a 

naked eye, ruler or microscope (Arend et al., 2016). With the development of science 

and technology, especially in the last century, methods of studying the external features 

of organisms have moved to the next level, have become more complete and deeper, 

integrated with biochemical, physiological, genetics, bioinformatics and other studies 

(Normanly, 2012). Nowadays, accumulated knowledge about phenotypes culminated by 

the development of high-throughput phenotyping systems and sophisticated plant 

phenomics software allowing transformation of the total field of plant physiology and 

botany onto digital form. 

 

2.    Objects of phenomics at different levels of plant organization 

 

Despite the fact that phenomics is a relatively young direction of plant biology, 

the range of objects studied is wide enough and constantly increasing (Table 1). It can 

be classical model plant species and important agricultural, ornamental plants, objects 

of medical biotechnology, etc. (Barmeier & Schmidhalter, 2017; Berger et al., 2007; 

Corona et al., 2019; Dutta et al., 2017; Scharr et al., 2016; Schneider et al., 2019; 

Stewart & McDonald, 2014; Volpato et al., 2021). Algae, monocotyledonous and 

dicotyledonous higher plants, both herbaceous and woody forms, are subject to 

phenotyping. The object can be a whole plant, its individual organs (leaves, roots, 

flowers or fruits) or plant population, depending on research strategies (Chacon et al., 

2013; de Medeiros et al., 2020; Dhondt et al., 2013; Doh et al., 2019; Falk et al., 2020; 

Fujita et al., 2014; Li et al., 2020; Mahlein et al., 2012; Parmley et al., 2019; Virlet et 

al., 2014).  

The main organ responsible for photosynthesis and plant productivity is the leaf, 

which is also the main source of carbon exchange and transpiration (Table 1). Yield can 

be predicted from photosynthetic activity, transpiration and leaf area (Lane et al., 2020; 

Parmley et al., 2019; Rincent et al., 2018). At the moment, phenomics is able to 

determine these indicators based on RGB, NIR/SWIR, fluorescence and hyperspectral 

images (Perez-Sanz et al., 2017). A number of reports dealt with phenotyping of shoots 
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and leaves of the model (Arabidopsis thaliana) and important agricultural plant species, 

the assessment of their morphological and physiological parameters (Barmeier & 

Schmidhalter, 2017; Berger et al., 2007; Corona et al., 2019; Manacorda & Asumendi, 

2018; Metzner et al., 2014; Stewart & McDonald, 2014; Vanhaeren et al., 2015; 

Volpato et al., 2021; Yao et al., 2018). Even simplest commercial phenotyping systems 

provide detailed information about the shape and size of leaves, growth movements of 

plants. For example, using non-destructive rosette imaging in the visible spectrum, 

differences in the color and shape of Arabidopsis leaves were shown under the influence 

of various stress and regulatory factors (Vanhaeren et al., 2015), and the spectrum of 

genes responsible for this was identified for different plant species (Coneva et al., 2017; 

Wilson-Sanchez et al., 2014). Owing to phenotyping methods, it became possible to 

study in detail the photosynthesis, respiration and transpiration on intact plants of a 

number of species without damaging them, to observe dynamics of these processes 

under various influences and at the different life cycle stages (Dobrescu et al., 2017; Du 

et al., 2020b; Herrit & Fritschi, 2020; McAusland et al., 2019). 

 
Table 1. Phenotyping at different levels ofplant organization 

 
Studied species  Phenotyping 

object 

Imaging 

techniques  

Measured 

parameters  

Key findings Reference 

Subcellular and cellular level 

Arabidopsis thaliana L. 

Heynh. 

Chloroplasts of 

mutant plants with 

abnormal 

morphologies 

CCD camera, 

monitoring red 

light reflectance 

Chloroplast 

movement 

and division,  

chlorophyll 

fluorescence 

 

Chloroplast division 

mutants with 

abnormal 

morphologies 

differed markedly 

from the wild type in 

their light adaptation 

capabilities 

Dutta et al., 

2017 

Pisum sativum L. Chloroplasts, 

mitochondria and 

vacuoles of leaves  

MultispeQ, 

3D confocal 

laser scanning 

microscope 

Chlorophyll 

content, 

quantum 

yield, non-

photochemic

al quenching, 

transpiration, 

water content 

of the leaves 

Method for 

estimation of 

organelle functional 

stoichiometry and to 

determine differential 

subcellular dynamics 

within cultivars in a 

high-throughput 

manner 

Schneider et 

al., 2019 

Chlamydomonas 

reinhardtii P.A.Dang. 

Flagella of 

swimming 

mutants 

Dark-field light 

microscope 

Flagella 

motility, beat 

frequency 

and rate; cell 

localisation 

Techniquesfor the 

analysis of behavior 

of motile cells was 

designed 

Fujita et al., 

2014 

Organ and tissue level 

Arabidopsis thaliana L., 

Nicotiana tabacum L. 

Leaves Digital RGB 

camera 

Leaf shape 

and size, 

nastic 

movements 

Detection of leaves, 

analysis of leaf 

quantity and 

morphology  

Scharr et al., 

2016 

Triticum aestivum L. Leaves damaged 

by Zymoseptoria 

tritici 

Digital RGB 

camera 

The number 

and size of 

pycnidia, 

total 

leaf area, 

green leaf 

area 

Automated 

quantitative disease 

assessment 

Stewart and 

McDonald, 

2014 
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Glycine max L.  

(115 breeding lines) 

Roots Digital RGB 

camera 

Length, 

surface area, 

volume, root 

branching, 

angles of root 

bending 

Relationship between 

root traits and 

genotype descriptors  

Falk et al., 

2020 

Beta vulgaris L. Leaves Hyperspectral 

camera 

Symptoms of 

foliar 

diseases  

Non-invasive 

detection of leaf 

damages caused by 

Cercosporabeticola, 

Erysiphe betae, 

Uromyces betae 

Mahlein et al., 

2012 

Sorghum spp.  

(55 accessions) 

Inflorescence X-Ray 

computed 

tomography 

Panicle area, 

major and 

minor axis 

length, 

convex hull 

area, solidity, 

depth, 

circularity, 

volume, etc 

Automated 

identification of 

major botanical races 

of sorghum by 

characterisation of 

panicles  

Li et al., 2020 

Dianthus caryophyllus L. Flowers Digital RGB 

camera 

Flower area, 

major and 

minor chord 

lengths, 

flower 

solidity and 

convexity 

Correlations between 

morphometric 

parameters in flowers 

and petals 

Chacon et al., 

2013 

Citrus spp. Fruits Digital RGB 

camera 

Presence of 

specific 

diseases in 

citrus fruits 

assessed by 

artificial 

neural 

network 

High quality 

detection systems for 

identification of 

anthracnose, black 

spot, canker, scab, 

melanose  

Doh et al., 

2019 

Glycine max L., Triticum 

aestivum L., Arachis 

hypogaea L., Pinus 

koraiensis Siebold & 

Zucc., Pistacia vera L., 

and Prunus tenella Batsch 

Fruits and seeds X-Ray 

computed 

tomography 

Length, 

width, 

thickness, 

radius, 

surface area, 

volume, 

compactness, 

and 

sphericity of 

fruits and 

seeds 

3D image analysis 

software for 

automatic 

segmentation and 

quantification of 

morphological 

parameters  

Liu et al., 

2020 

Brassica napus L. Roots Electrical 

impedance 

tomography 

Morphologic

al parameters 

(shape, 

length, area, 

density) and 

electrical 

impedance 

Method for non-

invasive analysis of 

root development and 

investigating infected 

plants distinctive 

characteristic 

Corona et al, 

2019 

Brachiaria ruziziensis 

Germ. & C.M. Evrard 

Seeds Digital X-ray 

analysis 

Seed area, 

perimeter, 

circularity, 

width, height, 

solidity, 

integrated 

density and 

seed filling 

Correlation between 

relative density, 

integrated density, 

seed filling and 

physiological 

attributes of seed 

quality 

de Medeiros 

et al., 2020 
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Organismal level 

Hordeum vulgare L. Leaves, culms, 

ears 

PhenoTrac with 

spectral sensors 

(VIS + NIR; 

flash and 

canopy sensor 

and 

hyperspectral 

camera) 

Organ 

specific dry 

weights, N 

accumulation 

number of 

ears m-2, 

normalised 

difference 

vegetation 

index 

 

Correlations between 

plant organs and the 

final grain yield  

Barmeier and 

Schmidhalter, 

2017 

Arabidopsis thaliana L. Rosette with 

leavesdamaged by 

Pseudomonas 

syringae 

Chlorophyll 

fluorescence 

sensor 

Photosynthes

is parameters 

(FV/FM, Rfd, 

and NPQ) 

Earlier detection of 

plant-pathogen 

interactions 

comparing to human 

eye (6 h vs 24 h) 

Berger et al., 

2007 

Population level  

Triticum aestivum L. 

(breeding lines) 

Field wheat 

population 

UAV-Based 

digital RGB 

camera 

Plant height, 

canopy color 

Prediction plant 

height and revealing 

genotype-

environment 

interaction  

Volpato et al., 

2021 

Malus domestica Borkh 

(520 hybrids). 

Population of 

apple trees 

RGB, near-

infrared, and 

thermal infrared 

cameras 

Temperature, 

water 

potential 

Identifying abiotic 

and biotic factors 

inducing water stress 

in trees  

Virlet et al., 

2014 

 

To study the photosynthesis, various advanced chlorophyll fluorescence detection 

techniques (PAM, LIF, etc.) and analysis methods(JIP-test) were integrated with the 

phenomics approach, which significantly increased the productivity and accuracy of 

analysis (Bauriegel et al., 2010; Breia et al., 2013; da Silva, 2015; Perez-Bueno et al., 

2019; Pieruschka et al., 2014; Pineda et al., 2008; Rascher & Pieruschka, 2020; Räsch 

et al., 2014; Virlet et al., 2015). Multispectral imaging method of phenomics made it 

possible to reveal the genetic basis of transpiration mechanisms in apple trees under 

conditions of water deficit (Virlet et al., 2015). The chlorophyll fluorescence imaging in 

combination with thermography makes it possible to identify healthy and infected 

melon plants with high accuracy from leaf images (Pineda et al., 2008). By decreasing 

the FV/FM parameter, the distribution and progression of late blight (Fusarium spp.) is 

observed in winter wheat populations (Bauriegel et al., 2010). Using PAM 

measurements, tissue-specific distribution pattern of photosynthetic competence has 

been determined, as well as the ability to photosynthesis in various tissues of grape 

berries was studied in detail (Breia et al., 2013). Laser-induced fluorescence transients 

(LIFT) and laser-induced fluorescence spectroscopy (LIFS) are the methods of imaging 

of chlorophyll fluorescence excited by artificial light systems, but, unlike PAM, it uses 

a laser, not a LED (Perez-Bueno et al., 2019). These methods are used for remote 

(telescope or tower) measurements of chlorophyll fluorescence parameters of trees 

(Pieruschka et al., 2014; Rascher & Pieruschka, 2020) or agricultural plants (Räsch et 

al., 2014). JIP test is a reliable mathematical model for analysis of quick (< 1 s) 

chlorophyll fluorescence changes (Strasser et al., 2004). JIP test has been applied in 
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different studies of heat treatment (Stefanov et al., 2011) and nitrogen deficiency 

(Redillas et al., 2011). 

Phenotyping of the root system has been progressing over the last two decades 

(Tracy et al., 2020). Modern root phenotyping allows digital analysis of macroscopic 

(size, architectonics, branching) and microscopic (structure of trichoblasts, tissues, 

stele) root parameters. In recent years, 3D modeling of root architecture has been 

successfully combined with the molecular analyses of genes encoding receptors and 

other regulatory systems controlling rapid root growth responses (Clark et al., 2011). 

Introduction of modern phenomics approaches makes it possible to identify previously 

unknown complex characteristics of roots that determine the productivity and stress 

resistance of agricultural crops, which is necessary for effective implementation of agro-

amelieorative measures and development of sustainable agriculture (Paez-Garcia et al., 

2015; Tracy et al., 2020). Hyperspectral imaging allows for encoding physical and 

chemical properties of root systems (Bodner et al., 2018). Magnetic resonance imaging 

is used for root system architecture imaging of soil-grown plants (van Dusschoten et al., 

2016). Many studies also use PET or X-ray CT (McGrail et al., 2020; Takahashi & 

Pradal, 2021). 

Flower phenotyping is widely used in the ornamental floriculture (Chacon et al., 

2013). It is also important for determining flowering time in cereals to predict 

productivity in the early stages of plant development (Wang et al., 2019). In the case of 

fruits, phenomics is most often used for economically important edible plants such as 

tomatoes, grapes and others (Feldmann et al., 2020; Migicovsky et al., 2017; Nankar et 

al., 2020). A number of methods have been developed for the analysis of images of 

seeds to assess their quality (Joosen et al., 2012). Phenotyping systems make it possible 

to automatically define the shape, size and other morphological indicators of various 

types of seeds, which revealed a number of completely new patterns of their formation 

(Tanabata et al., 2012).   

An importantarea of phenomics is the study of woody plants, as a rule, on a 

population scale in gardens or woodlands (Sankaran et al., 2019; Santini et al., 2019; 

Zhang et al., 2020b). Large-scale study of the state of plants in forest stands is almost 

impossible due to the topology of the areas, the characteristics of the trees (too large for 

manual assessment), the inaccessibility of some regions, the large amount of data and 

their high heterogeneity. Modern phenotyping methods, provided by the latest 

achievements of science, engineering and information technology, are able to overcome 

these limitations (Dungey et al., 2018). For example, using three machine learning 

methods set of 2.7 million observations composed of 62 variables describing climate, 

forest management, tree genetics, and fine-scale terrain information extracted from 

environmental surfaces, management records, and remotely sensed data was analysed to 

identify the most important drivers of forest productivity (Bombrun et al., 2020). 

 

3.      Major principles of digital phenotyping 

 

 Major principles of modern high-throughput techniques include non-

invasiveness, use of wide range of imaging sensors capturing comprehensive and 

accurate information about plants, modern data processing and deep data analysis tools 

using computer vision and machine learning approaches (Mochida et al., 2019a; Perez-

Sanz et al., 2017; Rascher et al., 2011). One of the major advantages of phenotyping 

systems is their non-invasiveness, which means in situ exploration of plant morphology 
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and physiology (Mochida et al., 2019b). Possibility of non-invasive plant research is 

closely connected with the equipment used, a wide range of imaging sensors, capturing 

information about plants, including RGB-, multi- and hyperspectral cameras, LIDAR 

technology, thermography and fluorescence imaging, MRI, PET, CT, LIFT, LIFS 

(Perez-Sanz et al., 2017; Roitsch et al., 2019). Modern phenomics approaches allow for 

a deep studying of the processes of formation and functioning of aboveground shoots 

and, what is more difficult and important, belowground roots in its natural conditions, 

without any damage or interference with the natural flow of physiological processes 

(Rascher et al., 2011). For example, classical for phenotyping, RGB imaging enables a 

fast and precise determination of the leaf area, and Arabidopsis, tobacco, cereals shoot 

fresh and dry weights (Humplik et al., 2015b) or allow detection and identification of 

disease symptoms in plants (Mahlein, 2016). Equipment that is more sophisticated 

provides more complex and informative data revealing complex physiological problems 

(Atkinson et al., 2019; Dhanagond et al., 2019; Rascher et al., 2011; Shinohara et al., 

2020; Takahashi & Pradal, 2021; Totzke et al., 2017; Woo et al., 2008). For example, 

magnetic resonance imaging, computed tomography or positron emission tomography 

can resolve root structure in 3D (Atkinson et al., 2019; Takahashi & Pradal, 2021), 

white neutron beam radiography and tomography provide information about water 

content both in roots and rhizosphere (Shinohara et al., 2020; Totzke et al., 2017). Non-

invasive phenotyping allowed for unraveling QTLs drought tolerance responsibility in 

barley (LemnaTec-Scanalyzer 3D system) (Dhanagond et al., 2019), PAM fluorometry 

successfully screened for various photosynthetic traits (Rascher et al., 2011), 

chlorophyll fluorescence imaging helped to predict survival of soil-grown plants under 

drought treatment (Woo et al., 2008), etc.  Figure 1 shows the standard stages for 

obtaining and processing plant images for phenotyping. 

The principle of non-invasiveness becomes the basis for narrower section of 

phenomics – volatomics, a promising method to measure the emission of volatile 

organic compounds, photosynthetic gas exchange and transpiration (Jud et al., 2018).  

Complex data requires modern processing approaches that provide high 

throughput and high accuracy of its analysis. In last years, phenomics prevailing trend is 

the use of computer vision and machine learning algorithms (Chandra et al., 2020; 

Demidchik et al., 2020). Originally, digital phenotyping started from simple obtaining 

and processing of digital images. Then, these procedures were automated and bundled 

with brief image annotation and analyses. Further technological advances were in 

adding neural network modules and improving machine vision techniques. Currently, 

automated imaging with the analysis by artificial intelligence software has become a 

routine and allow to investigate a multitude of important physiological phenomena, 

including leaf development (Ubbens et al., 2020), chlorosis caused by iron deficiency 

(Bai et al., 2018), reactions on drought (Ludovisi et al., 2017), plant-pathogen 

interactions (DeChant et al., 2017), flowering (Xu et al., 2018), fruit ripeness (El-

Bendary et al., 2015). Aspects of using neural network in plant phenomics are described 

in the paper in the section “Image analysis and use of neural networks in plant 

phenotyping” 
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Fig. 1. Typical stages of digital plant phenotyping 

1. Object of phenotyping. 2. Imaging station with different sensors (A - NIR, B - RGB, 

C - Hyperspectral, etc.). 3. Sensors for monitoring the environment (light, temperature, 

humidity). 4. Server for the analysis of information from environmental sensors. 5. Server 

for collecting and processing information from the imaging sensors. 6. Data warehouse. 7. 

Cleaning and correcting errors in data. 8. Sorting of information. 9. Normalisation of data. 

10. Searching for patterns by artificial neural network. 11. Data analysis. 12. Visualisation 

and presentation of results. 13. Server for changing control of the system by computer and 

operator 

 

 

4.       Phenotyping systems and commercial platforms for digital phenomics 

 

High-performance plant phenomics is often based on specific hardware and 

software systems called ‘phenotyping platforms’ (Shashko et al., 2020). They provide 

collection and processing of information about plant phenotypes. Modern phenotyping 

systems generally divide into indoor and outdoor set-ups (Großkinsky et al., 2015). 

Their size and automation can be different as well as their sensor set can vary a lot. 

Laboratory systems include manually operated platforms (Yang et al., 2020) and 

automated platforms with mobile sensors or conveyors with plants (Du et al., 2020a; 



A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
13 

 

Nagel et al., 2020), while large-scale field systems can be composed of portal crane 

system (Sadeghi-Tehran et al., 2017), ground robot (Xu et al., 2020), towers (Li et al., 

2021) or aerial vehicles (Yang et al., 2017). A large number of commercial companies 

and research centers are represented on the world market for phenomics equipment, 

focusing on both fundamental and applied purposes and problems of plant biology, and 

producing various products from single cameras and sensors to large-scale modular 

systems. The major producers of phenotyping platforms are the following: Lemna Tec 

(Germany), Photon systems instruments (Czech Republic), Optimalog (France), Crop 

Design (Belgium), Phenoscope (France), WIWAM (Belgium), Phenospex (Netherlands) 

and WPS (Netherlands) (Demidchik et al., 2020; Shashko et al., 2020). 

The most developed area of phenomics with the widest base of equipment is 

laboratory phenotyping (Rouphael et al., 2018). The use of indoor systems of various 

sizes with fully controlled environmental conditions makes it possible to create an ideal 

model for studying the influence of biotic and abiotic factors and their combinations on 

plants (Fiorani & Schurr, 2013). There are two major groups of these systems: ‘sensor-

to-plant’ and ‘plant-to-sensor’ (Du et al., 2020a; Nagel et al., 2020). The 'sensor-to-

plant' concept is based on transporting imaging modules to plants while 'plant-to-sensor' 

system means movement of container with a plant to the imaging position. First type is 

generally presented by conveyor pipelines, such as multisensory Hyper AIxpert (Lemna 

Tec) and Plant Screen Modular System (PSI). Using these platforms, an in-depth study 

of the mechanisms of supplying the water leaf of cereals has been carried out (Fahlgren 

et al., 2015) and detailed description of chlorophyll fluorescence changes in 

Arabidopsis leaves in response to water deficit has been performed (Mishra et al., 

2016).  

Plant-to-sensor platforms are very diverse, they can be represented by small 

stationary boxes with stationary plants and sensors, can be equipped with robotic arms 

and include cultivation chambers. Manually operated systems are of this platform type 

and still widely used for digital phenotyping because they allow for very accurate 

resolution for quick measurements of small batches (Agnew et al., 2017). Some 

commercial platforms require manual installation of plant pots. As a rule, plant-to-

sensor systems have a lower throughput than conveyors, but they eliminate mechanical 

stress in plants from active location change. Thus, using a box-type platform Image 

AIxpert (Lemna Tec), the dynamics of the phenotypic responses of C4 plants to 

nitrogen deficiency and drought was studied in detail (Neilson et al., 2015); and a group 

of genes that control the geometry of the tomato leaves was found (Coneva et al., 2017).  

In recent years, the number of studies in open areas has increased, it is the so-

called high-throughput field phenotyping (Yu et al., 2017). The most common field 

platforms use ground wheeled or airborne vehicles with several types of sensors to 

measure plant characteristics. Typical examples of ground platforms are Scanalyzer 

Field (Lemna Tec) and Plant Screen Field (PSI), determining the shoot architecture and 

the symptoms of stress (Virlet et al., 2016), the mechanism of cold resistance (Humplik 

et al., 2015a), the patterns of phenotype formation in plants with a known genotype 

(Cendero-Mateo et al., 2017). Some authors show that sub-meter resolution satellite 

multispectral imagingis a promising application in field phenotyping, especially when 

genotypic response to stress is prominent (Sankaran et al., 2019). Satellite phenotyping 

has a number of advantages, including fast/automatic data collection from large areas, 

as well as their limitations (Zhang et al., 2020a).  
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The forestry uses unmanned aerial vehicles (UAV) or flying drones to search for 

and phenotype the damaged areas, genetic variation, canopy architecture, photosynthetic 

pigments, photosynthetic efficiency and water use of the forest (Araus & Cairns, 2014). 

Genetic variability screening of the morphophysiological characteristics of mature 

forest trees has been carried out using a UAV (Santini et al., 2019). Farmers monitor the 

state of crops and soil composition by satellite imaging (Sankaran et al., 2015). In 

decorative floriculture and landscape design, high-throughput phenotyping systems 

have beencombined with machine learning and computer vision approaches for variety 

verification, identification of plant diseases and for selection plants with high 

physiological state (Maeda-Gutierrez et al., 2020; Taghavi et al., 2018). 

 

5.      Characteristics of phenotyping cameras and sensors 

 

To solve phenotyping problems, modern developments in the field of imaging are 

used.For the detection and analysis of plants, RGB, fluorescence, thermal and 

hyperspectral types of imaging have beenadapted (Bai et al., 2018; Berger et al., 2007; 

Bodner et al., 2018; Ludovisi et al., 2017; Perez-Bueno et al., 2019; Santini et al., 2019; 

Volpato et al., 2021; Yao et al., 2018). The principle of different imaging methods is 

the same for different technologies. Camera sensor captures and converts photons 

falling on it into an electrical signal, which isdecoded by computer to build an image 

(Linhares et al., 2020).  

A characteristic feature of RGB imaging is the use of Bayer filter, which divides 

the entire spectrum into blue, red and green in such a way that each photodetector 

receives part of the photons of the desired wavelength (Filoteo-Razo et al., 2015). 

Based on the resulting colour matrix, the image is recreated. Often a white light source 

is used in conjunction with an RGB camera to provide a standardised amount of light to 

ensure accurate colour separation (Bora et al., 2015). 

In fluorescence imaging, an object, such as plant leaves, is irradiated by the higher 

energy light (of the excitation wavelength), which can then be emitted as the 

fluorescence (an emission wavelength). Fluorescence photonsare detected by the sensor 

and analysed. In contrast to conventional visible imaging, fluorescence imaging is 

independent of ambient light and provides single-channel images subject to 

segmentation analysis using simple threshold-setting approaches (Rousseau et al., 

2013). A special parameter of thermal imaging is the use of focusing lenses made of 

special materials such as germanium, calcium fluoride, crystalline silicon, special 

plastic. Such a lens transmits wavelengths in the range from 700 to 14000 nm (Combs 

& Shroff, 2017).  

In hyperspectral imaging, the spectrum is split into hundreds or thousands of 

narrower spectra, which are detected by photodetectors on the sensor (Lodhi et al., 

2019). Thus, each photodetector collects a vector of wavelength values for each pixel. 

These values form a 3:3 matrix called a data cube that stores information about each 

pixel across the entire wavelength range (Elmasry et al., 2012). 

 

6.      Image analysis and use of neural networks in plant phenotyping 

 

A large number of commercial open-source programs, applications and libraries 

are available for phenotyping (Falk et al., 2020). One of the most commonly used 

‘computer vision’ libraries is Open CV, which provides a wide range of functionality 



A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
15 

 

for working with both still images and streaming video. The library contains more than 

five thousand functions and algorithms, among which there are both classical and 

modern methods of analysis (Pulli et al., 2012). A number of programs for phenotype 

image analysis are wholly or partly based on this library, for example the Bellwether 

Phenotyping Platform (Phenomics Center of Wageningen University; Netherlands).  

A number of commercial and free computer programs for the analysis of 

biological images are used in modern phenomics (Mochida et al., 2019). The 

“Quantitative-plant” website summarises other image analysis software 

(https://www.quantitative-plant.org/software). One of the most popular programs is 

ImageJ (National Institutes of Health, USA). ImageJ is capable of performing various 

manipulations with an image, such as increasing its clarity, detecting borders, 

automatically adjusting the brightness and contrast parameters. ImageJ allows to 

determine length, area, calculate statistical parameters and to create graphs based on the 

obtained data. J Microvision software quantitatively assesses and classifies images, 

conducts the dynamic analysis and combine the multiple images. Bio Image XD 

provides batch analysis of images without the knowledge of programming languages. 

This program carries out the 3D rendering, noise reduction and various arithmetic 

operations (Costa et al., 2019).  

Nowadays, the neural networks have been involved in a multitude of phenotyping 

studies on plant physiology, including plant growth (Dobrescu et al., 2017; Nagel et al., 

2020; Vanhaeren et al., 2015), development (Metzner et al., 2014), reproduction (Doh 

et al., 2019; Feldmann et al., 2020; Liu et al., 2020), photosynthesis (da Silva, 2015; Du 

et al., 2020b; Herrit & Fritschi, 2020; McAusland et al., 2019; van Bezouw et al., 

2019), water exchange and mineral nutrition (Cotrozzi & Couture, 2019; Munns et al., 

2010; Neilson et al., 2015; Virlet et al., 2015), mechanisms of regulation of productivity 

and stress resistance (Dutta et al., 2017; Humplík et al., 2015a; Rascher & Pieruschka, 

2020; Virlet et al., 2014; Yao et al., 2018).  

Apart from machine vision techniques, a number of applications for phenomics 

are based on ‘machine learning’ methods. The machine learning is a vast class of 

artificial intelligence methods that enable a computer to learn from its own ‘experience’, 

as well as examples and analogies (Feldmann et al., 2020). It is an integrated and 

systematic approach to data analysis and it uses probability theory, statistics, and 

theories of decision, visualisation and optimisation (Pound et al., 2017). The learning 

opportunity automatically improves the accuracy of calculations based on previous 

results, due to which the machine learning is actively used to solve very complex 

problems, where data structure and patterns of their relationships are not known (Arel et 

al., 2010; Bombrun et al., 2020; Doh et al., 2019; Feldmann et al., 2020). One of the 

key machine learning techniques is the so-called ‘neural networks’, in particular, their 

narrower direction, a ‘convolutional neural networks’ (CNN) designed specifically for a 

high-precision image analysis, including biological applications (Mirowski et al., 2008). 

The CNN has been successfully applied in the detection of control mechanisms and a 

detailed description of the stages of leaf development (Singh et al., 2016), exploring the 

relationship between genotype and phenotype in a number of species (Taghavi et al., 

2018), the identification of pathogen-induced damages in corn leaves (DeChant et al., 

2017), the establishment of inflorescence development mechanisms (Xiong et al., 

2017), computer reconstruction of the whole plant model using the algorithms of 

segmentation (Jin et al., 2018). CNNs are also applicable in the field research, in 

particular, in assessing the quality of seed material in the breeding of a wide range of 

https://www.quantitative-plant.org/software
https://www.researchgate.net/profile/Piotr-Mirowski
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agricultural plants, and identifying the quantitative mathematical characteristics of the 

cotton flowering process (El-Bendary et al., 2015; Feldmann et al., 2020). Several 

CNN-based programs achieved accuracies of plant stress identification as 99%, for 

example, 99.4% for GoogLe Net and 99.7% for ResNet-101 (Singh et al., 2018). There 

are many open-source ‘deep learning’ libraries and platforms (Tensor Flow, Keras, 

Theno, etc.), allowing non-programmers to develop own CNN models. 

Most of the work involving neural networks is based on RGB imaging analysis, 

but there are studies analysing a wider range of electromagnetic spectrum (Mirowski et 

al., 2008). Significant progress has been made in the use of machine learning in the 

analysis of hyperspectral images to determine the maturity and varietal differences in 

tomatoes, peppers and apples (see special edition of Expert Systems with Applications, 

2015, Volume 42, Issue 4). Recently, the mechanisms of the primary reactions of the 

black poplar to the lack of moisture were determined using thermal imaging data from 

aerial vehicles (Ludovisi et al., 2017). Compared with conventional segmentation 

methods, CNN-based approaches increase the accuracy of root phenotyping by up to 

30% (Smith et al., 2020; Wang et al., 2019). More accurate segmentation of the root 

system architecture (RSA) allows calculations of important phenotypic traits of the root 

in response to various factors. CNNs have also been adapted for segmentation of RSA 

on X-ray images for reconstruction of the root three-dimensional architecture (Douarre 

et al., 2018). 

Classification tasks are a significant part of CNN use in the digital biology. For 

example, Wheat Net was developed and applied, which predicts the percentage of 

bloom in wheat images. For the training of Wheat Net, eleven classes were annotated 

for each stage of wheat flowering. As a result, Wheat Net showed an accuracy 

comparable to using manual counting by plant biologists (R
2
 = 0,987 and R

2
 = 0,982, 

respectively). This suggests of a great potential for including CNN in commercial plant 

phenotyping applications used for crop breeding and genomics research (Wang et al., 

2019). CNNs can also be used to monitor specific plant development events, such as 

lodging of cereals (Maeda-Gutierrez et al., 2020). The Lodge Net software has been 

developed, which allows determining and predictinglodging and regular areas, using 

different image classification scenarios (Mardanisamani et al., 2019). Currently, some 

CNNs have achieved as much as 87% and 99% accuracy for stress identification and 

classification (DeChant et al., 2017; Fuentes et al., 2017; Lu et al., 2017). 

CNN regression models were used for estimation of sugar/acid ratio in citrus (Xu 

et al., 2018). To this end, an ‘excitation-emission matrix’ technique (EEM) was used. 

EEM images were used as input for CNN training. Sugar/acid ratio was determined 

using trained CNN models for twenty test samples and the results showed that the 

CNN-based regression model achieved the lowest prediction error as compared to the 

conventional regression models (Itakura et al., 2019). Another study investigated, using 

a fully CNN, the blueberry bruising and calyx segmentation. In this research, the model 

was based on the VGG-16 network and it demonstrated that CNNs provided accuracy 

up to 81.2%, while the support vector machine gave only 46.6% (Zhang et al., 2020b). 

Overall, these studies have demonstrated that CNN has great potential for solving 

the most difficult problems arising at various stages of phenotyping. In particular, some 

types of CNN have simplified the process of extracting phenotypic traits from images, 

which will improve the processing and analysis of plant imaging data. 
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7.     Major achievements of plant phenomics  

 

Even simple digital RGB imaging technologies give an opportunity to 

automatically identify Arabidopsis leaves and evaluate total rosette area, relative leaf 

growth rate and as a result to compare growth behavior of different genotypes 

(Arvidsson et al., 2011). Evaluation of leaf growth parameters using chlorophyll 

fluorescence imaging allowed discovering the differences in total projected leaf area 

and potential quantum yield of PSII in stress conditions, caused by drought, chilling and 

altered spectral composition (Jansen et al., 2009). Root growth assessment in solid 

medium was a big challenge before the development of specialized phenotyping 

techniques. It is possible to track root growth motions, its physiological traits and 

biomass production in gel medium using non-invasive video imaging (Ma et al., 2019; 

Yazdanbakhsh & Fisahn, 2009), to quantify root system parameters in soil using 

magnetic resonance imaging (Pflugfelder et al., 2017; van Dusschoten et al., 2016), 

positron emission tomography (Garbout et al., 2012) or X-ray computed tomography 

(Mooney et al., 2012). 

Chlorophyll fluorescence imaging is commonly used for photosynthesis 

phenotyping and gives the advantages of fast and high-throughput measurements in 

contrast with traditional methods of assessing photosynthesis parameters (Du et al., 

2020b; McAusland et al., 2019). Using these technique cultivar specific differences of 

PSII efficiency and the rate of induction and relaxation of non-photochemical 

quenching in Triticum aestivum were observed under controlled gaseous conditions 

(McAusland et al., 2019). Modified chlorophyll fluorescence imaging was used even in 

the field for monitoring of photosynthesis reaction dynamics in changing light and 

temperature conditions and this method allowed for revealing specific genotype x 

environment interactions (Keller et al., 2019). Handle equipment like Fluorpen (Qubit 

systems INC, Canada) is also widely used for photosynthesis characterisation, for 

example, contrasting responses to elevated air temperatures were observed among four 

soybean genotypes (Herrit & Fritschi, 2020) or photochemical efficiency of grain 

sorghum was measured in a field setting (Herritt et al., 2020).  

Significant part of phenotyping research aimed at revealing features of plant stress 

physiology caused by different types of biotic and abiotic stressors (Khanna et al., 2019; 

Pineda et al., 2021; Singh et al., 2018). Modern phenomics approaches allowfor 

automatically collecting and analysing huge amounts of data in high spatial and 

temporal resolution about plant growth under stress condition or combination of 

multiple stress factors such as drought, weeds and nutrient deficiency (Cotrozzi & 

Couture, 2019; Khanna et al., 2019). Chlorophyll fluorescence, RGB, and infrared 

cameras capture data about variety of traits reflecting plant growth, photosynthetic 

efficiency, rosette morphology, and temperature in wild type and hsp101Arabidopsis 

mutants under heat stress treatment and it was observed that early changes in 

photochemical quenching corresponded with the rosette size at later stages (Gao et al., 

2020). Plant responses to biotic stress factors, from pathogens (viruses, bacteria, and 

fungi) to pests (herbivory) were analysed both in lab and field including detection and 

identification of stress factor and evaluation of its impact on plant physiology (Méline et 

al., 2020; Mochida et al., 2019; Mutka & Bart, 2014; Perez-Bueno et al., 2019). 

Chlorophyll fluorescent imaging is usually used for these purposes (Méline et al., 2020; 

Mochida et al., 2019), but thermal (Pineda et al., 2021) and hyperspectral imaging 

(Kuska et al., 2015) can also be used. 

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Raghav-Khanna
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Raghav-Khanna
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8.      Concluding remarks and future challenges 

 

Plant phenotyping has shown rapid progress in the past two decades. Phenomics 

has evolved from very simple manual digital approaches to new high-performance 

systems, called high-throughput phenomics platforms, capable of monitoring and 

assessing thousands of plants. Both lab and field phenotyping systems tend to use more 

sensors with wider range of spectra, which are constantly expanding the range of 

researcher possibilities. The introduction of NIR sensors made it possible to discover 

completely new patterns of plant life, such as root volume values correlated well with 

root dry weight. Hyperspectral camera provided information about leaf water 

concentrations of major macro- and micronutrients. Intriguingly, the combinations of 

sensors, which are being used recently, are taking physiological and morphological tests 

to a new level, providing unprecedented set of new digital data on plant phenotype.  

Revolutionary changes in plant phenomics have been made in recent years with 

the help of artificial neural networks. Their introduction into the usual practice of 

analysis of phenotypes made it possible to identify integral physiological parameters, 

such as the simultaneous and interconnected growth of the shoots or roots of one 

organism, the formation of flowers and fruits, the physiological response to stress or 

regulatory factors.     

Future challenges of phenomics mainly consist in the development of 

interconnected and correlated studies based on a combination of omics studies. It is also 

important to connect phenomics data and methodology with a real physiological 

context. Further development of artificial intelligence and standardisation of 

measurements may help in this direction. Incorporation of phenomics techniques into 

plant biotechnology and agriculture will also be a crucial step forward. 

 

Acknowledgement 

This work was supported by State Research Program “Innovative technologies 

and techniques” of Belarus (Grant 013/2021 to V.D.).  

 

References  

 
Agnew, E., Bray, A., Floro, E., Ellis, N., Gierer, J., Lizárraga, C., O'Brien, D., Wiechert, M., 

Mockler, T. C., Shakoor, N., Topp, C. N. (2017). Whole‐plant manual and image‐based 

phenotyping in controlled environments. Current Protocols in Plant Biology, 2, 1–21. 

doi: 10.1002/cppb.20044 

Araus, J.L., Cairns, J.E. (2014). Field high-throughput phenotyping: the new crop breeding 

frontier. Trends in Plant Science, 19, 52–61. doi: 10.1016/j.tplants.2013.09.008 

Arend, D., Junker, A., Scholz, U., Schuler, D., Wylie, J., Lange, M. (2016). PGP repository: a 

plant phenomics and genomics data publication infrastructure. Database (Oxford), doi: 

10.1093/database/baw033 

Arvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B. (2011). A growth phenotyping pipeline 

for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust 

quantification of genotype effects. New Phytologist, 191, 895–907. doi: 10.1111/j.1469-

8137.2011.03756.x 

Atkinson, J. A., Pound, M. P., Bennett, M. J., Wells, D. M. (2019). Uncovering the hidden half 

of plants using new advances in root phenotyping. Current Opinion in Biotechlonogy, 55, 

1–8. doi: 10.1016/j.copbio.2018.06.002 



A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
19 

 

Bai, G., Jenkins, S., Yuan, W., Graef, G. L., Ge, Y. (2018). Field-based scoring of soybean iron 

deficiency chlorosis using RGB imaging and statistical learning. Frontiers in Plant 

Science, 9, 1–12. doi: 10.3389/fpls.2018.01002 

Barmeier, G., &Schmidhalter, U. (2017). High-throughput field phenotyping of leaves, leaf 

sheaths, culms and ears of spring barley cultivars at anthesis and dough ripeness. 

Frontiers in Plant Science, 8, 1–16. doi: 10.3389/fpls.2017.01920  

Bauriegel, E., Giebel, A., Herppich, W. B. (2010). Rapid Fusarium head blight detection on 

winter wheat ears using chlorophyll fluorescence imaging. Journal of Applied Botany and 

Food Quality, 83, 196–203.  

Baute, J., Herman, D., Coppens, F., De Block, J., Slabbinck, B., Dell'Acqua, M., Pè, M. E., 

Maere, S., Nelissen, H., Inzé, D. (2016). Combined large-scale phenotyping and 

transcriptomics in maize reveals a robust growth regulatory network. Plant Physiology, 

170, 1848–1867. doi: 10.1104/pp.15.01883 

Berger, S., Benediktyova, Z., Matous, K., Bonfig, K., Mueller, M. J., Nedbal, L., Roitsch, T. 

(2007). Visualization of dynamics of plant-pathogen interaction by novel combination of 

chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent 

and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of 

Experimental Botany, 58, 797–806. doi: 10.1093/jxb/erl208 

van Bezouw, R. F. H. M., Keurentjes, J. J. B., Harbinson, J., Aarts, M. G. M. (2019). 

Converging phenomics and genomics to study natural variation in plant photosynthetic 

efficiency. Plant Journal, 97, 112–133. doi: 10.1111/tpj.14190 

Bodner, G., Nakhforoosh, A., Arnold, T., Leitner, D. (2018). Hyperspectral imaging: a novel 

approach for plant root phenotyping. Plant Methods, 14, 1–17. doi: 10.1186/s13007-018-

0352-1 

Bombrun, M., Dash, J. P., Pont, D., Watt, M. S., Pearse, G. D., Dungey, H. S. (2020). Forest-

scale phenotyping: productivity characterisation through machine learning. Frontiers in 

Plant Science, 11, 1–14. doi: 10.3389/fpls.2020.00099 

Bora, G. C., Lin, D., Bhattacharya, P., Bali, S., Pathak, R. (2015). Application of bio-image 

analysis for classification of different ripening stages of banana. Journal of Agricultural 

Science, 7, 152–160. doi: 10.5539/jas.v7n2p152 

Breia, R., Vieira, S., da Silva, J. M., Gerós, H., Cunha, A. (2013). Mapping grape berry 

photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse 

intensity in different tissues. Photochemistry and Photobiology, 89, 579–585. doi: 

10.1111/php.12046 

Cendero-Mateo, M. P., Muller, O., Albrecht, H, Rascher, U. (2017). Field phenotyping: 

challenges and opportunities. In A. Chabbi, H. W. Loescher (Ed.) Terrestrial Ecosystem 

Research Infrastructures. CRC Press. doi: 10.1201/9781315368252-4 

Chacon, B., Ballester, R., Birlanga, V., Rolland-Lagan, A.-G., Perez-Perez, J. M. (2013). A 

Quantitative framework for flower phenotyping in cultivated carnation (Dianthus 

caryophyllus L.). PLoS One, 8, 1–14. doi: 10.1371/journal.pone.0082165 

Chandra, A. l., Desai, S. V., Guo, W., Balasubramanian, V. N. (2020). Computer vision with 

deep learning for plant phenotyping in agriculture: a survey. arXiv: 2006.11391. doi: 

10.34048/ACC.2020.1.F1 

Clark, R. T., MacCurdy, R. B., Jung, J. K., Shaff, J. E., McCouch, S.R., Aneshansley, D. J., 

Kochian, L. V. (2011). Three-dimensional root phenotyping with a novel imaging and 

software platform. Plant Physiology, 156, 455–465. doi: 10.1104/pp.110.169102 

Combs, C. A. and Shroff, H. (2017). Fluorescence microscopy: a concise guide to current 

imaging methods. Current Protocols in Neuroscience, 79, 1–25. doi: 10.1002/cpns.29 

Coneva, V., Frank, M. H., de Luis Balaguer, M., Li, M., Sozzani, R., Chitwood, D. H. (2017). 

Genetic architecture and molecular networks underlying leaf thickness in desert-adapted 

tomato. Plant Physiology, 175, 376–391. doi: 10.1104/pp.17.00790 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.6, N.1, 2021 

 

 
20 

 

Corona, D., Sommer, S., Rolfe, S. A., Podd, F., Grieve, B. D. (2019). Electrical impedance 

tomography as a tool for phenotyping plant roots. Plant Methods, 15, 1–16. doi: 

10.1186/s13007-019-0438-4 

Costa, C., Schurr, U., Loreto, F., Menesatti, P., Carpentier, S. (2019). Plant phenotyping 

research trends, a science mapping approach. Frontiers in Plant Science, 9, 1–11.doi: 

10.3389/fpls.2018.01933 

Cotrozzi, L., Couture, J. (2019). Hyperspectral assessment of plant responses to multi‐stress 

environments: Prospects for managing protected agrosystems. Plants, People, Planet. doi: 

10.1002/ppp3.10080 

DeChant, C., Wiesner-Hanks, T., Chen, S, Stewart, E. L., Yosinski, J., Gore, M. A., Nelson, R. 

J., Lipson, H. (2017). Automated identification of northern leaf blight-infected maize 

plants from field imagery using deep learning. Phytopathology, 107, 1426–1432. doi: 

10.1094/PHYTO-11-16-0417-R 

Demidchik, V. V., Shashko, A. Y., Bandarenka, U. Y., Smolikova, G. N., Przhevalskaya, D. A., 

Charnysh, M. A., Pozhvanov, G. A., Barkovskyi, A. V., Smolich, I. I., Sokolik, A. I., 

Yu, M., Medvedev, S. S. (2020). Plant phenomics: fundamental bases, software and 

hardware platforms, and machine learning. Russian Journal of Plant Physiology, 67, 397–

412. doi: 10.1134/S1021443720030061 

Dhanagond, S., Liu, G., Zhao, Y., Chen, D., Grieco, M., Reif, J., Kilian, B., Graner, A., 

Neumann, K. (2019). Non-Invasive phenotyping reveals genomic regions involved in pre-

anthesis drought tolerance and recovery in spring barley. Frontiers in Plant Sciences, 10, 

1–21. doi: 10.3389/fpls.2019.01307 

Dhondt, S., Wuyts, N., Inze, D. (2013). Cell to whole-plant phenotyping: the best is yet to 

come. Trends in Plant Science, 18, 428–439. doi: 10.1016/j.tplants.2013.04.008 

Dobrescu, A., Scorza, L. C. T., Tsaftaris, S. A., McCormick, A. J. (2017). A “Do-It-Yourself” 

phenotyping system: measuring growth and morphology throughout the diel cycle in 

rosette shaped plants. Plant Methods, 13, 1–12. doi: 10.1186/s13007-017-0247-6 

Doh, B., Zhang, D., Shen., Y., Hussain, F., Doh, R., Ayepah, K. (2019). Automatic citrus fruit 

disease detection by phenotyping using machine learning. International Conference on 

Automation and Computing, 1–5. doi: 10.23919/IConAC.2019.8895102 

Douarre, C., Schielein, R., Frindel, C., Gerth, S., Rousseau, D. (2018). Transfer learning from 

synthetic data applied to soil-root segmentation in X-ray tomography images. Journal of 

Imaging, 4, 1–14. doi: 10.3390/jimaging4050065 

Du, J., Lu, X., Fan, J., Qin, Y., Yang, X., Guo, X. (2020). Image-based high-throughput 

detection and phenotype evaluation method for multiple lettuce varieties. Frontiers in 

Plant Science, 11, 1–15. doi: 10.3389/fpls.2020.563386 

Du, T., Meng, P., Huang, J., Peng, S., Xiong, D. (2020). Fast photosynthesis measurements for 

phenotyping photosynthetic capacity of rice. Plant Methods, 16, 1–10. doi: 

10.1186/s13007-020-0553-2 

Dungey, H. S., Dash, J. P., Pont, D., Clinton, P. W., Watt, M. S., Telfer, E. J. (2018). 

Phenotyping whole forests will help to track genetic performance. Trends in Plant 

Science, 23, 854–864. doi: 10.1016/j.tplants.2018.08.005 

van Dusschoten, D., Metzner, R., Kochs, J., Postma, J. A., Pflugfelder, D., Bühler, J., Schurr, 

U., Jahnke, S. (2016). Quantitative 3D analysis of plant roots growing in soil using 

magnetic resonance imaging. Plant Physiology, 170, 1176–1188. doi: 

10.1104/pp.15.01388 

Dutta, S., Cruz, J. A., Imran, S.M., Chen, J., Kramer D. M., Osteryoung, K. W. (2017). 

Variations in chloroplast movement and chlorophyll fluorescence among chloroplast 

division mutants under light stress. Journal of Experimental Botany, 68, 3541–3555. doi: 

10.1093/jxb/erx203401 

El-Bendary, N., El-Hariri, E., Hassanien, A. E., Badr, A. (2015). Using machine learning 

techniques for evaluating tomato ripeness. Expert Systems with Applications: An 

International Journal. doi: 10.1016/j.eswa.2014.09.057 



A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
21 

 

Elmasry, G., Kamruzzaman, M., Sun, D. W., Allen, P. (2012). Principles and applications of 

hyperspectral imaging in quality evaluation of agro-food products: a review. Critical 

Reviews in Food Science and Nutrition, 52, 999–1023.  

doi: 10.1080/10408398.2010.543495 

Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., 

McEntee, C. J., Warnasooriya, S. N., Kumar, I., Ficor, T., Turnipseed, S., Gilbert, K. B., 

Brutnell, T. P., Carrington, J. C., Mockler, T. C., Baxter, I. (2015). A Versatile 

phenotyping system and analytics platform reveals diverse temporal responses to water 

availability in Setaria. Molecular Plant, 8, 1520–1535. doi: 10.1016/j.molp.2015.06.005 

Falk, K., Jubery, Z., Mirnezami, S. V., Parmley, K. A., Sarkar, S., Songh, A., 

Ganapathysubramanian, B., Singh, A.K. (2020). Computer vision and machine learning 

enabled soybean root phenotyping pipeline. Plant Methods, 16, 1–19.  

doi: 10.1186/s13007-019-0550-5 

Feldmann, M. J., Hardigan, M. A., Famula, R. A., Lopez, C. M., Tabb, A., Cole, G. S., Knapp, 

S. J. (2020). Multi-dimensional machine learning approaches for fruit shape phenotyping 

in strawberry. Gigascience, 9, 1–13. doi: 10.1093/gigascience/giaa030 

Filoteo-Razo, J. D., Estudillo-Ayala, J. M., Hernández-Garcia, J. C., Trejo-Durán, M., Muñoz-

Lopez, A., Jauregui-Vázquez, D., Rojas-Laguna, R. (2015). RGB color sensor 

implemented with LEDs. SPIE Optical Engineering + Applications, 1–6.  

doi: 10.1117/12.2188243 

Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of 

Plant Biology, 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137 

Fuentes, A., Yoon, S., Kim, S., Park, D. A. (2017). Robust deep-learning-based detector for 

real-time tomato plant diseases and pests recognition. Sensors, 17, 1–21. doi: 

10.3390/s17092022 

Fujita, S., Matsuo, T., Ishiura, M., Kikkawa, M. (2014). High-throughput phenotyping of 

Chlamydomonas swimming mutants based on nanoscale video analysis. Biophysical 

Journal, 107, 336–345. doi: 10.1016/j.bpj.2014.05.033 

Gao, G., Tester, M., Julkowska, M. (2020). The use of high-throughput phenotyping for 

assessment of heat stress-induced changes in Arabidopsis. Plant Phenomics, 2020, 1–14. 

doi: 10.34133/2020/3723916 

Garbout, A., Munkholm, L., Hansen, S., Petersen, B., Munk, O., Pajor, R. (2012). The use of 

PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant 

interactions. Plant and Soil, 352, 113–127. doi: 10.1007/s11104-011-0983-8 

Großkinsky, D. K., Svensgaard, J., Christensen, S., Roitsch, T. (2015). Plant phenomics and the 

need for physiological phenotyping across scales to narrow the genotype-to-phenotype 

knowledge gap. Journal of Experimental Botany, 66, 5429–5440.  

doi: 10.1093/jxb/erv345 

Großkinsky, D. K., Syaifullah, S. J. Roitsch T. (2018) Integration of multi-omics techniques and 

physiological phenotyping within a holistic phenomics approach to study senescence in 

model and crop plants. Journal of Experimental Botany, 69, 825–844.  

doi: 10.1093/jxb/erx333 

Herrit, M.T., Fritschi, F.B. (2020). Characterization of photosynthetic phenotypes and 

chloroplast ultrastructural changes of soybean (Glycine max) in response to elevated air 

temperatures. Frontiers in Plant Science, 11, 1–16. doi: 10.3389/fpls.2020.00153 

Herritt, M., Pauli, D., Mockler, T., Thompson, A. (2020). Chlorophyll fluorescence imaging 

captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting. 

Plant Methods, 16, 1–13. doi: 10.1186/s13007-020-00650-0 

Houle, D., Govindaraju, D., Omholt, S. (2010). Phenomics: the next challenge. Nature Reviews 

Genetics, 11, 855–866. doi: 10.1038/nrg2897 

Humplik, J.F., Lazar, D., Furst, T., Husickova, A., Hybl, M., Spichal, L. (2015). Automated 

integrative high-throughput phenotyping of plant shoots: a case study of the cold-



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.6, N.1, 2021 

 

 
22 

 

tolerance of pea (Pisum sativum L.). Plant Methods, 11, 1–11. doi: 10.1186/s13007-015-

0063-9 

Humplík, J.F., Lazár, D., Husičková, A., Spichal, L. (2015). Automated phenotyping of plant 

shoots using imaging methods for analysis of plant stress responses – a review. Plant 

Methods, 11, 1–10. doi: 10.1186/s13007-015-0072-8 

Itakura, K., Saito, Y., Suzuki, T., Kondo, N., Hosoi, F. (2019). Estimation of citrus maturity 

with florescence spectroscopy using deep learning. Horticulturae, 5, 1–9.  

doi: 10.3390/horticulturae5010002 

Jansen, M., Gilmer, F., Biskup, B., Nagel, K., Rascher, U., Fischbach, A., Briem, S., Dreissen, 

G., Tittmann, S., Braun, S., Jaeger, I., Metzlaff, M., Schurr, U., Scharr, H., Walter, A. 

(2009).Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via 

GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana 

and other rosette plants. Functional Plant Biology, 36, 902–914. doi: 10.1071/FP09095 

Jin, S., Su, Y., Gao, S., Wu, F., Hu, T., Liu, J., Li, W., Wang, D., Chen, S., Jiang, Y., Pang, S., 

Guo, Q. (2018). Deep learning: individual maize segmentation from terrestrial lidar data 

using faster R-CNN and regional growth algorithms. Frontiers in Plant Science, 9, 1–12. 

doi: 10.3389/fpls.2018.00866 

Johannsen, W. (2014). The genotype conception of heredity. International Journal of 

Epidemiology, 43, 989–1000. doi: 10.1093/ije/dyu063 

Joosen, R. V. L., Arends, D., Willems, L. A. J., Ligterink, W., Jansen, R. C., Hilhorst, H. W. M. 

(2012). Visualizing the genetic landscape of Arabidopsis seed performance. Plant 

Physiology, 158, 570–589. doi: 10.1104/pp.111.186676 

Jud, W., Winkler, J. B., Niederbacher, B., Niederbacher, S., Schnitzler, J.-P. (2018). 

Volatilomics: a non-invasive technique for screening plant phenotypic traits. Plant 

Methods, 14, 1–18. doi: 10.1186/s13007-018-0378-4 

Keller, B., Matsubara, S., Rascher, U., Pieruschka, R., Steier, A., Kraska, T., Muller, O. (2019). 

Genotype specific photosynthesis x environment interactions captured by automated 

fluorescence canopy scans over two fluctuating growing seasons. Frontiers in Plant 

Science, 10, 1–35.doi: 10.3389/fpls.2019.01482 

Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R.,  Liebisch, F. (2019). A spatio 

temporal spectral framework for plant stress phenotyping. Plant Methods, 13, 1–18.doi: 

10.1186/s13007-019-0398-8 

Kim, J., Woo, H. R., Nam, H. G. (2016). Toward systems understanding of leaf senescence: an 

integrated multi-omics perspective on leaf senescence research. Molecular Plant, 9, 813–

825. doi: 10.1016/j.molp.2016.04.017 

Kuska, M., Wahabzada, M., Leucker, M., Dehne, H., Kersting, K., Oerke, E., Steiner, U., 

Mahlein, A. (2015). Hyperspectral phenotyping on the microscopic scale: towards 

automated characterization of plant-pathogen interactions. Plant Methods, 28, 1–14. doi: 

10.1186/s13007-015-0073-7 

Lane, H.M., Murray, S.C., Montesions-Lopez, O.A., Montesions-Lopez, A., Crossa, J., Rooney, 

D.K., Barreo-Farfan, I.D., De La Fuente, G.N., Morgan, C.L.S. (2020). Phenomic 

selection and prediction of maize grain yield from near‐infrared reflectance spectroscopy 

of kernels. The Plant Phenome Journal, 1–19. doi: 10.1002/ppj2.20002 

Li, L., Zhang, Q., Huang, D. (2014). A Review of imaging techniques for plant phenotyping. 

Sensors, 14, 20078–20111. doi: 10.3390/s141120078 

Li, M., Shao, M.-R., Zeng, D., Ju, T., Kellogg, E. A., Topp, C. N. (2020). Comprehensive 3D 

phenotyping reveals continuous morphological variation across genetically diverse 

sorghum inflorescences. New Phytologist, 226, 1873–1885. doi: 10.1111/nph.16533 

Li, D., Quan, C., Song, Z., Li, X., Yu, G., Li, C., Muhammad, A. (2021). High-throughput plant 

phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab 

to the field. Frontiers in Plant Science, 8, 1–24. doi: 10.3389/fbioe.2020.623705 

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Raghav-Khanna
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Lukas-Schmid
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Achim-Walter
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Juan-Nieto
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Roland-Siegwart
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0398-8#auth-Frank-Liebisch


A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
23 

 

Liu, W., Liu, C., Jin, J., Li, D., Fu, Y., Yuan, X. (2020). High-throughput phenotyping of 

morphological seed and fruit characteristics using X-ray computed tomography. Frontiers 

in Plant Science, 11, 1–10. doi: 10.3389/fpls.2020.601475 

Linhares, J. M. M., Monteiro, J. A. R., Bailão, A., Cardeira, L., Kondo, T., Nakauchi, S., 

Picollo, M., Cucci, C., Casini, A., Stefani, L., Nascimento, S. M. C. (2020). How good 

are RGB cameras retrieving colors of natural scenes and paintings? – A Study based on 

hyperspectral imaging. Sensors, 20, 1–14. doi: 10.3390/s20216242 

Lodhi, V., Chakravarty, D., Mitra, P. (2019). Hyperspectral imaging system: development 

aspects and recent trends. Sensing and Imaging, 20, 1–24. doi: 10.1007/s11220-019-

0257-8 

Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y. (2017). Identification of rice diseases using deep 

convolutional neural networks. Neurocomputing, 267, 378-384. 

Ludovisi, R., Tauro, F., Salvati, R., Khoury, S., Mugnozza, G. S., Harfouche, A. (2017). UAV-

based thermal imaging for high-throughput field phenotyping of black poplar response to 

drought. Frontiers in Plant Science, 8, 1–18. doi: 10.3389/fpls.2017.01681 

Ma, L., Shi, Y., Siemianowski, O., Yuan, B., Egner, T., Mirnezami, S., Lind, K., 

Ganapathysubramanian, B., Venditti, V., Cademartiri, L. (2019).Hydrogel-based 

transparent soils for root phenotyping in vivo. Proceedings of the National Academy of 

Sciences, 116, 11063–11068.doi: 10.1073/pnas.1820334116 

Maeda-Gutierrez, V., Galvan-Tejada, C. E., Zanella-Calzada, L. A., Celaya-Padilla, J. M., 

Galvan-Tejada, J. I., Gamboa-Rosales, H., Luna-Garcia, H., Magallanes-Quintanar, R., 

Guerrero-Mendez, C. A., Olvera-Olvera, C. A. (2020). Comparison of convolutional 

neural network architectures for classification of tomato plant diseases. Applied Science, 

10, 1–15. doi: 10.3390/app10041245 

Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., Oerke, E.-C. (2012). Hyperspectral 

imaging for small-scale analysis of symptoms caused by different sugar beet diseases. 

Plant Methods, 8, 1–13. doi: 10.1186/1746-4811-8-3 

Mahlein, A.-K. (2016). Plant disease detection by imaging sensors – parallels and specific 

demands for precision agriculture and plant phenotyping. Plant Disease, 100, 241–251. 

10.1094/PDIS-03-15-0340-FE 

Manacorda, C. A., Asurmendi, S. (2018). Arabidopsis phenotyping through geometric 

morphometrics. Gigascience, 7, 1–20. doi: 10.1093/gigascience/giy073 

Mardanisamani, S., Maleki, F., Kassani, S. H. Crop lodging prediction from UAV-acquired 

images of wheat and canola using a DCNN augmented with handcrafted texture features. 

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 

Long Beach, CA, USA, 2019. 

McAusland, L., Atkinson, J. A., Lawson, T., Murchie, E. H. (2019). High throughput procedure 

utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and 

photoprotection in leaves under controlled gaseous conditions. Plant Methods, 15, 1–15. 

doi: 10.1186/s13007-019-0485-x 

McGrail, R., van Sanford, D. A., McNear, D. H. (2020). Trait-Based root phenotyping as a 

necessary tool for crop selection and improvement. Agronomy, 10, 1–19. doi: 

10.3390/agronomy10091328 

de Medeiros, A. D., da Silva, L. J., Pereira, M. D., Oliveira, A., Dias, D. C. F. S. (2020). High-

throughput phenotyping of brachiaria grass seeds using free access tool for analyzing X-

ray images. Anais da Academia Brasileira de Ciências, 92, 1–17. doi: 10.1590/0001-

3765202020190209 

Méline, V., Brin, C., Lebreton, G., Ledroit, L., Sochard, D., Hunault, G., Boureau, T., Belin, E. 

(2020). Computation method based on the combination of chlorophyll fluorescence 

parameters to improve the discrimination of visually similar phenotypes induced by 

bacterial virulence factors. Frontiers in Plant Science, 11, 11–14. 

doi: 10.3389/fpls.2020.00213 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.6, N.1, 2021 

 

 
24 

 

Metzner, R., van Dusschoten, D., Bühler, J., Schurr, U., Jahnke, S. (2014). Belowground plant 

development measured with magnetic resonance imaging (MRI): exploiting the potential 

for non-invasive trait quantification using sugar beet as a proxy. Frontiers in Plant 

Science, 5, 1–11. doi: 10.3389/fpls.2014.00469 

Migicovsky, Z., Sawler, J., Gardner, K., Aradhya, M. K.,Prins, B. H., Schwaninger, H. R., 

Bustamante, C. D., Buckler, E. S., Zhong, G.-Y., Brown, P., Myles, S. (2017). Patterns of 

genomic and phenomic diversity in wine and table grapes. Horticulture Research, 4, 1–

11. doi: 10.1038/hortres.2017.35 

Mirowski, P., Lecun, Y., Madhavan, D., Kuzniecky, R. (2008). Comparing SVM and 

convolutional networks for epi- leptic seizure prediction from intracranial EEG. 

Conference: Proc. Machine Learning and Signal Processing, 1–6. 

doi :10.1109/MLSP.2008.4685487 

Mishra, K.B., Mishra, A., Klem, K., Govindjee, G. (2016). Plant phenotyping: a perspective. 

Indian Journal of Plant Physiology, 21, 1–19. doi: 10.1007/s40502-016-0271-y 

Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka S., Nishii, R., Melangi, F. 

(2019).Computer vision-based phenotyping for improvement of plant productivity: a 

machine learning perspective. Gigascience, 8, 1–13. doi: 10.1093/gigascience/giy153 

Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka S., Nishii, R., Melangi, F. (2019). 

Noninvasive phenotyping of plant–pathogen interaction: consecutive in situ imaging of 

fluorescing pseudomonas syringae, plant phenolic fluorescence, and chlorophyll 

fluorescence in Arabidopsis leaves. Gigascience, 8, doi: 10.1093/gigascience/giy153 

Mooney, S., Pridmore, T., Helliwell, J., Bennett, M. (2012). Developing X-ray Computed 

tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil, 

352, 1–22. doi: 10.1007/s11104-011-1039-9 

Munns, R., James, R., Sirault, X., Furbank, R., Jones, H. (2010). New phenotyping methods for 

screening wheat and barley for beneficial responses to water deficit. Journal of 

Experimental Botany, 61, 3499–3507. doi: 10.1093/jxb/erq199 

Mutka, A., Bart, R. (2014). Image-based phenotyping of plant disease symptoms. Frontiers in 

Plant Science, 5, 1–9. doi: 10.3389/fpls.2014.00734 

Nagel, K.A., Lenz, H., Kastenholz, B., Gilmer, F., Averesch, A., Putz, A., Heinz, K., Fischbach, 

A., Scharr, H., Fiorani, F., Walter, A., Schurr, U. (2020). The platform GrowScreen-Agar 

enables identification of phenotypic diversity in root and shoot growth traits of agar 

grown plants. Plant Methods, 16, 1–17. doi: 10.1186/s13007-020-00631-3 

Nankar, A.N., Tringovska, I., Grozeva, S., Todorova, V., Kostova, D. (2020). Application of 

high-throughput phenotyping tool Tomato Analyzer to characterize balkan capsicum fruit 

diversity. Scientia Horticulturae, 260, 1–12. doi: 10.1016/j.scienta.2019.108862 

Neilson, E.H., Edwards, A.M., Blomstedt, C.K., Berger, B., Moller, B.L., Gleadow, R.M. 

(2015). Utilization of a high-throughput shoot imaging system to examine the dynamic 

phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over 

time. Journal of Experimental Botany, 66, 1817–1832. doi: 10.1093/jxb/eru526 

Normanly, J. (2012). High-throughput phenotyping in plants – methods and protocols. Springer 

Protocols Handbooks. 

Paez-Garcia, A., Motes, C.M., Scheible, W.R., Chen, R., Blancaflor, E.B., Monteros, M.J. 

(2015). Root traits and phenotyping strategies for plant improvement. Plants, 4, 334–355. 

doi: 10.3390/plants4020334 

Parmley, K., Nagasubramanian, K., Sarkar, S., Ganapathysubramanian, B., Singh, A.K. (2019). 

Development of optimized phenomic predictors for efficient plant breeding decisions 

using phenomic-assisted selection in soybean. Plant Phenomics, 2019, 1–15. doi: 

10.34133/2019/5809404 

Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Miras Moreno, M. 

B., Reynaud, H., Canaguier, R., Trtílek, M., Panzarová, K., Colla, G. (2019). 

A Combined phenotypic and metabolomic approach for elucidating the biostimulant 

https://www.researchgate.net/profile/Piotr-Mirowski
https://www.researchgate.net/profile/Ruben-Kuzniecky
https://doi/


A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
25 

 

action of a plant-derived protein hydrolysate on tomato grown under limited water 

availability. Frontiers in Plant Science, 10, 1–18. doi: 10.3389/fpls.2019.00493 

Perez-Bueno, M.L., Pineda, M., Baron, M. (2019). Phenotyping plant responses to biotic stress 

by chlorophyll fluorescence imaging. Frontiers in Plant Science, 10, 1–15. doi: 

10.3389/fpls.2019.01135 

Perez-Sanz, F., Navarro, P.J., & Egea-Cortines, M. (2017). Plant phenomics: an overview of 

image acquisition technologies and image data analysis algorithms. GigaScience, 6(11), 

gix092. doi: 10.1093/gigascience/gix09217 

Pflugfelder, D., Metzner, R., Dusschoten, D., Reichel, R., Jahnke, S., Koller, R. (2017). Non-

invasive imaging of plant roots in different soils using magnetic resonance imaging 

(MRI). Plant Methods, 13, 1–9. doi: 10.1186/s13007-017-0252-9 

Pieruschka, R., Albrecht, H., Muller, O., Berry, J.A., Klimov, D., Kolber, Z.S., Malenovsky, Z., 

Rascher, U. (2014). Daily and seasonal dynamics of remotely sensed photosynthetic 

efficiency in tree canopies. Tree Physiology, 34, 674–685. doi: 10.1093/treephys/tpu035 

Pineda, M., Soukupová, J., Matouš, K., Nedbal, L., & Barón, M. (2008). Conventional and 

combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants. 

Photosynthetica, 46(3), 441-451. 

Pineda, M., Barón, M., Pérez-Bueno, M. (2021). Thermal imaging for plant stress detection and 

phenotyping. Remote Sensing, 13, 1–21. doi: 10.3390/rs13010068 

Pound, M., Atkinson, J., Townsend, A., Wilson, M., Griffiths, M., Jackson, A., Bulat, A., 

Tzimiropoulos, G., Wells, D., Murchie, E., Pridmore, T., Frenchcorresponding, A. 

(2017). Deep machine learning provides state-of-the-art performance in image-based 

plant phenotyping. GigaScience, 6, 1–10. doi: 10.1093/gigascience/gix083 

Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V. (2012). Real-time computer vision with 

OpenCV. Communications of the ACM, 55, 61–69. doi: 10.1145/2184319.2184337 

Räsch, A., Muller, O., Pieruschka, R., Rascher, U. (2014). Field observations with laser-induced 

fluorescence transient (LIFT) method in barley and sugar beet. Agriculture, 4, 159–169. 

doi: 10.3390/agriculture4020159 

Rascher, U., Blossfeld, S., Fiorani, F., Jahnke, S., Jansen, M., Kuhn, A. J., Matsubara, S., 

Merchant, A., Metzner, R., Ller-Linow, M. M., Nagel, K. A., Pieruschka, R, Pinto F., 

Schreiber, C. M., Temperton, V. M., Thorpe, M. R., van Dusschoten, D. V., van 

Volkenburgh, E., Windt, C. W., Schurr, U. (2011). Non-invasive approaches for 

phenotyping of enhanced performance traits in bean. Functional Plant Biology, 38, 968–

983. doi: 10.1071/FP11164 

Rascher, U., Pieruschka, R. (2020). Spatio-temporal variations of photosynthesis: the potential 

of optical remote sensing to better understand and scale light use efficiency and stresses 

of plant ecosystems. Precision Agriculture, 9, 355–366. doi: 10.1007/s11119-008-9074-0 

Redillas, M. C. F. R., Jeong, J. S., Strasser, R. J., Kim, Y. S., Kim, J.-K. (2011). JIP analysis on 

rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. Journal of 

the Korean Society for Applied Biological Chemistry, 54, 827–832. doi: 

10.1007/BF03253169 

Rincent, R., Charpentier, J.-P., Faivre-Rampant, P., Paux, E., Le Gouis, J., Bastien, C., Segura, 

V. (2018). Phenomic selection is a low-cost and high-throughput method based on 

indirect predictions: proof of concept on wheat and poplar. G3, 8, 3961–3972. doi: 

10.1534/g3.118.200760 

Roitsch. T., Cabrera-Bosquet, L., Fournier, A., Ghamkhars, K., Jimenez-Berni, J. J. (2019). 

Review: New sensors and data-driven approaches – a path to next generation phenomics, 

Plant Science, 282, 2–10. doi: 10.1016/j.plantsci.2019.01.011 

Rouphael, Y., Spichal, L., Panzarova, K., Casa, R., Colla, G. (2018). High-throughput plant 

phenotyping for developing novel biostimulants: from lab to field or from field to lab? 

Frontiers in Plant Science, 9, 1–6. doi: 10.3389/fpls.2018.01197 

Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., Guillaumès, J., 

Manceau, C., Jacques, M., Boureau, T. (2013). High throughput quantitative phenotyping 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.6, N.1, 2021 

 

 
26 

 

of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 13, 9–

17. doi: 10.1186/1746-4811-9-17 

Sadeghi-Tehran, P., Sabermanesh, K., Virlet, N., Hawkesford, M. J. (2017). Automated method 

to determine two critical growth stages of wheat: heading and flowering. Frontiers in 

Plant Science, 8, 1–14. doi: 10.3389/fpls.2017.00252 

Sankaran, S., Khot, L.R., Espinoza, C.Z., Jarolmasjed, S., Sathuvalli, V.R., Vandermark, G.J., 

Miklas, P.N., Carter, A.H., Pumphrey, M.O., Knowles, N.R., Pavek, M.J. (2015). Low-

altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a 

review. European Journal of Agronomy, 70, 112–123. doi: 10.1016/j.eja.2015.07.004 

Sankaran, S., Quiros, J.J., Miklas, P.N. (2019). Unmanned aerial system and satellite-based 

high-resolution imagery for high-throughput phenotyping in dry bean. Computers and 

Electronics in Agriculture, 165, 1–9. 

Santini, F., Kefauver, S.C., de Dios, V.R., Araus, J.L., Voltas, J. (2019). Using unmanned aerial 

vehicle‐based multispectral, RGB and thermal imagery for phenotyping of forest genetic 

trials: A case study in Pinus halepensis. Annals of Applied Biology, 174, 1–40. doi: 

10.1111/aab.12484 

Scharr, H., Minervivi, M., French, A. P., Klukas, C., Kramer, D., Liu, X., Luengo, I., Pape, J.-

M., Polder, G., Vukadinovic, D., Yin, X., Tsaftaris, S. (2016). Leaf segmentation in plant 

phenotyping: a collation study. Machine Vision ad Applications, 27, 585–606. doi: 

10.1007/s00138-015-0737-3 

Schneider, S., Harant, D., Bachmann, G., Nägele, T., Lang, I., Wienkoop, S. (2019). Subcellular 

phenotyping: using proteomics to quantitatively link subcellular leaf protein and 

organelle distribution analyses of Pisum sativum cultivars. Frontiers in Plant Science, 10, 

1–13. doi: 10.3389/fpls.2019.00638 

Shashko, A.Y., Bandarenka, U.Y., Charnysh, M.A., Przhevalskaya, D.A., Usnich, S.L., 

Pshybytko, N.L., Smolich, I.I., Demidchik, V.V. (2020). Modern phenotyping platforms 

and their application in plant biology and agriculture. Journal of the Belarusian State 

University. Biology, 2, 15–25. doi: 10.33581/2521-1722-2020-2-15-25 

Shinohara, T., Kai, T., Oikawa, K., Nakatani, T., Segawa, M., Hiroi, K., Su Y., Ooi, M., 

Harada, M., Iikura, H., Hayashida, H., Parker, J. D., Matsumoto, Y., Kamiyama, T., Sato. 

H., Kiyanagi. Y. (2020). The energy-resolved neutron imaging system, RADEN. Review 

of Scientific Instruments, 91, 1–15. doi: 10.1063/1.5136034 

da Silva, J. M. (2015). Monitoring photosynthesis by in vivo chlorophyll fluorescence: 

application to high-throughput plant phenotyping. In M. Najafpour (Ed.), Applied 

Photosynthesis. doi: 10.5772/62391 

Singh, A., Ganapathysubramanian, B., Singh, A., Sarkar, S. (2016). Machine learning for high-

throughput stress phenotyping in plants. Trends in Plant Science, 21, 110–124. doi: 

10.1016/j.tplants.2015.10.015 

Singh, A., Ganapathysubramanian, B., Sarkar, S., Singh, A. (2018). Deep learning for plant 

stress phenotyping: trends and future perspectives. Trends Plant Science, 23, 883–898. 

doi: 10.1016/j.tplants.2018.07.004 

Smith, A. G., Petersen, J., Selvan, R., & Rasmussen, C. R. (2020). Segmentation of roots in soil 

with U-Net. Plant Methods, 16(1), 1-15. 

Stefanov, D., Petkova, V., Denev, I. (2011). Screening for heat tolerance in common bean 

(Phaseolus vulgaris L.) lines and cultivars using JIP-test. Scientia Horticulturae, 128, 1–

6. doi: 10.1016/j.scienta.2010.12.003   

Stewart, E.L., & McDonald, B.A. (2014). Measuring quantitative virulence in the wheat 

pathogen Zymoseptoriatritici using high-throughput automated image analysis. 

Phytopathology, 104, 985–992. doi: 10.1094/PHYTO-11-13-0328-R 

Strasser, R.J., Tsimilli-Michael, M., Srivastava, A. (2004). Analysis of the chlorophyll a 

fluorescence transient. In: G. G. Papageorgiou (Ed.), Chlorophyll a fluorescence: a 

signature of photosynthesis (pp. 321–362). Dordrecht: Springer. doi: 10.1007/978-1-

4020-3218-9_12 



A. SHASHKO et al.: BASIC PRINCIPLES AND MAIN APPLICATIONS OF PLANT… 

 

 
27 

 

Taghavi, S., Esmaeilzadeh, M., Najafi, M., Brown, T., Borevitz, J.O. (2018). Deep phenotyping: 

deep learning for temporal phenotype/genotype classification. Plant Methods, 14, 1–15. 

doi: 10.1186/s13007-018-0333-4 

Takahashi, H., Pradal, C. (2021). Root phenotyping: important and minimum information 

required for root modeling in crop plants. Breeding Science, 71, 109–116. doi: 

10.1270/jsbbs.20126 

Tanabata, T., Shibaya, T., Hori, K., Ebana, K., Yano, M. (2012). SmartGrain: High-throughput 

phenotyping software for measuring seed shape through image analysis. Plant 

Physiology, 160, 1871–1880. doi: 10.1104/pp.112.205120 

Totzke, C., Jardjilov, N., Manke, I., Oswald, S.E. (2017). Capturing 3D Water flow in rooted 

soil by ultra-fast neutron tomography. Scientific Reports, 7, 1–9. doi: 10.1038/s41598-

017-06046-w 

Tracy, S.R., Nagel, K.A., Postma, J.A., Fassbender, H., Wasson, A., Watt, M. (2020). Crop 

improvement from phenotyping roots: highlights reveal expanding opportunities. Trends 

in Plant Science, 25, 105–118. doi: 10.1016/j.tplants.2019.10.015 

Ubbens, J., Cieslak, M., Prusinkiewicz, P., Stavness, I. (2020). The use of plant models in deep 

learning: an application to leaf counting in rosette plants. Plant Methods, 14, 1–10. doi: 

10.1186/s13007-018-0273-z 

Vanhaeren, H., Gonzales, N., Inze, D. (2015). A Journey through a leaf: phenomics analysis of 

leaf growth in Arabidopsis thaliana.  The Arabidopsis Book, 1–19. doi: 10.1199/tab.0181 

Virlet, N., Lebourgeois, V., Martinez, S., Costes, E., Labbe, S., Regnard, J.-L. (2014). Stress 

indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree 

population for response to water constraints. Journal of Experimental Botany, 65, 5429–

5442. doi: 10.1093/jxb/eru309 

Virlet, N., Costes, E., Martinez, S., Kelner, J.J, Regnard J.L. (2015). Multispectral airborne 

imagery in the field reveals genetic determinisms of morphological and transpiration 

traits of an apple tree hybrid population in response to water deficit. Journal of 

Experimental Botany, 66, 5453–5465. doi: 10.1093/jxb/erv355 

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., Hawkesford, M.J. (2016). Field Scanalyzer: 

An automated robotic field phenotyping platform for detailed crop monitoring. 

Functional Plant Biology, 44, 143–153. doi: 10.1071/FP16163 

Volpato, L., Pinto, F., Gonzalez-Perez, L., Thompson, I.G., Borem, A., Reynolds, M., Gerard, 

B., Molero, G., Rodrigues, F.A. (2021). High throughput field phenotyping for plant 

height using UAV-based RGB imagery in wheat breeding lines: feasibility and validation. 

Frontiers in Plant Science, 12, 1–19. doi: 10.3389/fpls.2021.591587 

Walter, A., Liebisch, F., Hund, A. (2015). Plant phenotyping: from bean weighing to image 

analysis. Plant Methods, 11, 1–11. doi: 10.1186/s13007-015-0056-8 

Wang, T., Rostamza, M., Song, S. (2019). SegRoot: a high throughput segmentation method for 

root image analysis. Computers and Electronics in Agriculture, 162, 45–854. doi: 

10.1016/j.compag.2019.05.017 

Wang, X., Xuan, H., Evers, B., Shrestha, S., Pless, R., Poland, J. (2019). High-throughput 

phenotyping with deep learning gives insight into the genetic architecture of flowering 

time in wheat. Gigascience, 8, 1–11. doi: 10.1093/gigascience/giz120 

Wilson-Sanchez, D., Rubio-Diaz, S., Munoz-Viana, R., Perez-Perez, J. M., Jover-Gil, S., Ponce, 

M. R., Micol, J. L. (2014). Leaf phenomics: a systematic reverse genetic screen for 

Arabidopsis leaf mutants. Plant Journal, 79, 878–891. doi: 10.1111/tpj.12595 

Woo, N.S., Badger, M.R., Pogson, B.J. (2008). A rapid, non-invasive procedure for quantitative 

assessment of drought survival using chlorophyll fluorescence. Plant Methods, 4, 1–14. 

doi: 10.1186/1746-4811-4-27 

Xiong, X., Duan, L., Liu, L., Tu, H., Yang, P., Wu, D., Chen, G., Xiong, L., Yang, W., Liu, Q. 

(2017). Panicle-SEG: a robust image segmentation method for rice panicles in the field 

based on deep learning and superpixel optimization. Plant Methods, 13, 1–14. doi: 

10.1186/s13007-017-0254-7 



ADVANCES IN BIOLOGY & EARTH SCIENCES, V.6, N.1, 2021 

 

 
28 

 

Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., Robertson, J. (2018). Aerial images and 

convolutional neural network for cotton bloom detection. Frontiers in Plant Science, 8, 

1–17. doi: 10.3389/fpls.2017.02235 

Xu, R., Li, C., Velni, J. M. (2020). Development of an autonomous ground robot for field high 

throughput phenotyping. IFAC-Papers On Line, 51, 70–74.  

doi: 10.1016/j.ifacol.2018.08.063 

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., 

Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H., Yang, H. (2017). Unmanned aerial vehicle 

remote sensing for field-based crop phenotyping: current status and perspectives. 

Frontiers in Plant Science, 8, 1–26. doi: 10.3389/fpls.2017.01111 

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., Yan, J. 

(2020). Crop phenomics and high-throughput phenotyping: past decades, current 

challenges, and future perspectives. Molecular Plant, 13, 187–214. doi: 

10.1016/j.molp.2020.01.008 

Yao, J., Sun, D., Cen, H., Xu, H., Weng, H., Yan, F., He, Y. (2018). Phenotyping of 

Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor 

fluorescence imaging. Frontiers in Plant Science, 9, 1–15. doi: 10.3389/fpls.2018.00603 

Yazdanbakhsh, N., Fisahn, J. (2009). High throughput phenotyping of root growth dynamics, 

lateral root formation, root architecture and root hair development enabled by PlaRoM. 

Functional Plant Biology, 36, 938–946. doi: 10.1071/FP09167 

Yu, K., Kirchgessner, N., Grieder, C., Walter, A., Hund, A. (2017). An image analysis pipeline 

for automated classification of imaging light conditions and for quantification of wheat 

canopy cover time series in field phenotyping. Plant Methods, 13, 1–13.  

doi: 10.1186/s13007-017-0168-4  

Zhang, C., Marzougui, A., Sankaran, S. (2020). High-resolution satellite imagery applications in 

crop phenotyping: An overview. Computers and Electronics in Agriculture, 175, 1–10. 

doi: 10.1016/j.compag.2020.105584 

Zhang, M., Jiang, Y., Li, C., Yang, F. (2020). Fully convolutional networks for blueberry 

bruising and calyx segmentation using hyperspectral transmittance imaging. Biosystems 

Engineering, 192, 159–175. doi: 10.1016/j.biosystemseng.2020.01.018 

 

 

 


