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1 Introduction

The study of nonlinear evolution equations (NLEEs) appear everywhere in applied mathematics
and theoretical physics including engineering sciences and biological sciences. These equations
play a key role in describing key scientific phenomena. For this reason, the search of exact
travelling wave solutions to NLEEs plays very important role in the study of these physical
phenomena. In every phenomenon in real life, there are many parameters and variables related
to each other under the imperious law on that phenomenon. When the relations between the pa-
rameters and variables are presented in mathematical language we usually derive a mathematical
model of the problem, which may be an equation, a differential equation, an integral equation, a
system of integral equations and etc. We first present an applicable analytical method for solv-
ing the new Hamiltonian amplitude equation in which are called the improved tanh (Φ(ξ)/2)-
expansion method. In fact, it has been discovered that many models in mathematics and
physics are described by nonlinear partial differential equations. With the rapid development
of nonlinear sciences based on computer algebraic system, many effective methods have been
presented, such as, the homotopy analysis method (Dehghan et al., 2010a,b), the variational iter-
ation method, (He, 1999; Dehghan et al., 2010c; Jafari et al., 2014), the homotopy perturbation
method (Dehghan et al., 2010c; Dehghan & Manafian, 2009), the sine-cosine method (Wazwaz,
2006), the tanh-coth method (Manafian Heris & Zamanpour, 2014; Abdou & Soliman, 2006;
El-Wakil & Abdou, 2007), the modified extended tanh-function method (Abdou & Soliman,
2006; El-Wakil & Abdou, 2007), the Exp-function method (Dehghan et al., 2011a,b; Manafian
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Heris & Bagheri, 2010), the exp(-Φ(ξ))-expansion method (Roshid & Rahman, 2014; Hafez et al.,
2015), the (G

′

G )-expansion method (Aghdaei & Manafian Heris, 2011; Naher & Abdullah, 2013),

the modified simple equation method (Jawad et al., 2010), the novel (G
′

G )-expansion method

(Alam et al., 2014; Abazari, 2013), the new approach of the generalized (G
′

G )-expansion method
(?), the Jacobi elliptic function method (Chen & Wang, 2005), the homogeneous balance method
(Zhao & Wang, 2006) and so on. In this paper, we consider the Hamiltonian amplitude equation
as follows

iux + utt + 2σ|u|2u− εuxt = 0, (1)

where σ = ±1, ε ≪ 1. The current equation was recently introduced by Wadati et al. (1992).
This is an equation which governs certain instabilities of modulated wave trains, with the ad-
ditional term uxt overcoming the ill-posedness of the unstable nonlinear Schrödinger equation.
It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which arises in dissipative
systems and is apparently not integrable. Here, we use the improved tanh (Φ(ξ)/2)-expansion
method for constructing a range of exact solutions for the following ordinary partial differential
equations that in this article we developed solutions as well. In this paper, we put forth the
new approaches of improved tanh (Φ(ξ)/2)-expansion method to construct exact travelling wave
solutions including solitons, kink, periodic and rational solutions to the Hamiltonian amplitude
equation. The purpose of this paper is to obtain exact solutions of the new Hamiltonian ampli-
tude equation and to determine the accuracy of the improved tanh (Φ(ξ)/2)-expansion method
in solving this kind of problems. The paper is organized as follows: In Section 2, we describe
the improved tanh (Φ(ξ)/2)-expansion method. In section 3, we examine the new Hamiltonian
amplitude equation with method introduced in Sections 2 and offer the physical interpretations
of the solutions. Also conclusion is given in Section 4. Finally some references are given at the
end of this paper.

2 Methodology

2.1 Description of improved tanh (Φ(ξ)/2)-expansion technique

The objective of this section is to outline the use of the tanh (Φ(ξ)/2)-expansion for solving
certain nonlinear PDE.
Step 1. We suppose that given nonlinear partial differential equation for u(x, t) to be in the
form

N (u, ux, ut, uxx, utt, ...) = 0, (2)

which can be converted to an ODE

Q(u, u′,−µu′, u′′, µ2u′′, ...) = 0, (3)

by the transformation ξ = x− µt is the wave variable. Also, µ is constant to be determined
later.
Step 2. Suppose the traveling wave solution of Eq. (3) can be expressed as follows:

u(ξ) = S(Φ) =
m∑
k=0

Ak

[
p+ tanh

(
Φ(ξ)

2

)]k
+

m∑
k=1

Bk

[
p+ tanh

(
Φ(ξ)

2

)]−k

, (4)

where Ak (0 ≤ k ≤ m) and Bk (1 ≤ k ≤ m) are constants to be determined, such that
Am ̸= 0, Bm ̸= 0 and Φ = Φ(ξ) satisfies the following ordinary differential equation:

Φ′(ξ) = a sinh(Φ(ξ)) + b cosh(Φ(ξ)) + c. (5)
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We will consider the following special solutions of equation (5):
Family 1: When a2 + c2 − b2 < 0 and b− c ̸= 0, then

Φ(ξ) = 2tanh−1

[
− a

b− c
+

√
b2 − a2 − c2

b− c
tan

(√
b2 − a2 − c2

2
(ξ + C)

)]
.

Family 2: When a2 + c2 − b2 > 0 and b− c ̸= 0, then

Φ(ξ) = −2tanh−1

[
a

b− c
+

√
a2 + c2 − b2

b− c
tanh

(√
a2 + c2 − b2

2
(ξ + C)

)]
.

Family 3: When a2 + c2 − b2 < 0, b ̸= 0 and c = 0, then

Φ(ξ) = 2tanh−1

[
−a

b
+

√
b2 − a2

b
tan

(√
b2 − a2

2
(ξ + C)

)]
.

Family 4: When a2 + c2 − b2 > 0, c ̸= 0 and b = 0, then

Φ(ξ) = 2tanh−1

[
a

c
+

√
a2 + c2

c
tanh

(√
a2 + c2

2
(ξ + C)

)]
.

Family 5: When a2 + c2 − b2 < 0, b− c ̸= 0 and a = 0, then

Φ(ξ) = 2tanh−1

[√
b+ c

b− c
tan

(√
b2 − c2

2
(ξ + C)

)]
.

Family 6: When a = 0 and c = 0, then Φ(ξ) = ln

[
tan

(
b

2
(ξ + C)

)]
.

Family 7: When b = 0 and c = 0, then Φ(ξ) = ln
[
− tanh

(a
2
(ξ + C)

)]
.

Family 8: When a2 + b2 = c2, then

Φ(ξ) = 2tanh−1

[
a

−b+
√
a2 + b2

+

√
2a

−b+
√
a2 + b2

tanh

(√
2a

2
(ξ + C)

)]
.

Family 9: When a = b = c = ka, then Φ(ξ) = 2tanh−1
[
eka(ξ+C) − 1

]
.

Family 10: When a = c = ka and b = −ka, then Φ(ξ) = 2tanh−1

[
eka(ξ+C)

−1 + eka(ξ+C)

]
.

Family 11: When b = a, then Φ(ξ) = −2tanh−1

[
(a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

]
.

Family 12: When b = c, then Φ(ξ) = 2tanh−1

[
ea(ξ+C) − c

a

]
.

Family 13: When a = −c and b = c, then Φ(ξ) = 2tanh−1
[
1 + e−c(ξ+C)

]
.

Family 14: When b = −b and c = −b, then Φ(ξ) = 2tanh−1

[
b+ ea(ξ+C)

a

]
.

Family 15: When b = −b, a = −b, and c = b, then Φ(ξ) = 2tanh−1

[
1

eb(ξ+C) − 1

]
.

Family 16: When b = −c, then Φ(ξ) = 2tanh−1

[
aea(ξ+C)

cea(ξ+C) − 1

]
.

Family 17: When a = 0 and b = c, then Φ(ξ) = 2tanh−1 [c(ξ + C)] .
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Family 18: When a = 0 and b = −c, then Φ(ξ) = 2tanh−1

[
1

c(ξ + C)

]
.

Family 19: When b = 0 and a = c, then Φ(ξ) = 2tanh−1
[
1 +

√
2 tanh

(√
2c
2 (ξ + C)

)]
,

where Ak, Bk(k = 1, 2, ...,m), a, b and c are constants to be determined later. But, the positive
integer m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in Eq. (5). If m is not an integer, then a
transformation formula should be used to overcome this difficulty.
Step 3. Substituting (4) into Eq. (3) with the value of m obtained in Step 2. Collecting the

coefficients of tanh
(
Φ(ξ)
2

)k
, coth

(
Φ(ξ)
2

)k
(k = 0, 1, 2, ...), then setting each coefficient to zero,

we can get a set of over-determined equations for A0, Ak, Bk(k = 1, 2, ...,m) a, b, c and p with
the aid of symbolic computation Maple.
Step 4. Solving the algebraic equations in Step 3, then substituting A0, A1, B1, ..., Am, Bm, µ, p
in (4).

3 The Hamiltonian amplitude equation

In this section, we present the improved tanh (Φ(ξ)/2)-expansion methods to solve the Hamil-
tonian amplitude equation where introduced in Sections 2.

3.1 The improved tanh (Φ(ξ)/2)-expansion method

We consider the Hamiltonian amplitude equation as follows

iux + utt + 2σ|u|2u− εuxt = 0, (6)

where σ = ±1, ε ≪ 1. This is an equation which governs certain instabilities of modulated
wave trains, with the additional term uxt overcoming the ill-posedness of the unstable nonlinear
Schrödinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which
arises in dissipative systems and is apparently not integrable. By make the transformation

u(x, t) = eiηv(ξ), η = αx+ βt, ξ = µ(x− st), (7)

Eq. (7) is carried to an ODE

(µs2 + εµ2s)v′′ + i(µ− 2βµs− εβµ+ εαµs)v′ − (α+ β2 − εαβ)v + 2σv3 = 0. (8)

If we take

s =
1− εβ

2β − αε
, (9)

then Eq. (8) transform into

(µs2 + εµ2s)v′′ − (α+ β2 − εαβ)v + 2σv3 = 0. (10)

By balancing the v′′ and v3, using homogenous principle, in Eq. (8) we get

M + 2 = 3M, ⇒ M = 1. (11)

Then by using section 3, the trail solution will be as

v(ξ) = A0 +A1

[
p+ tanh

(
Φ(ξ)

2

)]
+B1

[
p+ tanh

(
Φ(ξ)

2

)]−1

. (12)

Substituting (12) and (5) into Eq. (10), we obtain the following results
Set I:

s = s, A0 = 0, A1 = 0, B1 = B1, µ = ±2(b− c)

∆

√
−σ

s2 + sε
B1, p =

a

b− c
, (13)
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∆ = a2 + b2 − c2, β = β, α =
∆β2 − 2σ(b− c)2B2

1

∆(εβ − 1)
, u(ξ) = B1

[
a

b− c
+ tanh

(
Φ(ξ)

2

)]−1

eiη.

(14)
By using of the (14) and Families 1, 2, 6, 8, 10, 11 and 15-19 get respectively as

u1(ξ) =
(b− c)B1√

−∆
cot

(√
−∆

2
(ξ + C)

)
eiη, u2(ξ) = −(b− c)B1√

∆
coth

(√
∆

2
(ξ + C)

)
eiη, (15)

Figure 1: Graphs of (a) and (b) real values and (c) and (d) imaginary values of u1 (15) are
demonstrated at a = 1, b = 1, c = 2, B1 = 2, ε = 1

3 , β = 2, σ = 1 and by considering the values
(a) and (c) −20 < x < 20, −10 < t < 10 and (b) and (d) −20 < x < 20, t = 1.

u3(ξ) = B1 coth

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])
eiη,

u4(ξ) =

√
2aB1

−b+
√
a2 + b2

coth

(√
2a

2
(ξ + C)

)
eiη.

(16)

u5(ξ) = B1

[
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

]]−1

eiη, u6(ξ) = B1

[
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

]−1

eiη, (17)

u7(ξ) = B1

[
1

2
+

1

eb(ξ+C) − 1

]−1

eiη, u8(ξ) = B1

[
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

]−1

eiη,

u9(ξ) =
B1

c(ξ + C)
eiη, u10(ξ) = cB1(ξ + C)eiη, u11(ξ) =

√
2B1

2
coth

(√
2

2
(ξ + C)

)
eiη, (18)
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where ξ = ± 2(b−c)
a2+b2−c2

√
−σ

s2+sε
B1(x− st), η =

(
(a2+b2−c2)β2−2σ(b−c)2B2

1
(a2+b2−c2)(εβ−1)

)
x+ βt and s = 1−εβ

2β−αε .

Set II:

A0 = 0, A1 = 0, B1 = ± 1

(b− c)ε

√
a2 + c2 − b2

2σ
, µ = ±1

ε

√
−2

(a2 + c2 − b2)(s2 + sε)
, (19)

s = s, p =
a

b− c
, β =

1

ε
, α = α,

u(ξ) = ± 1

(b− c)ε

√
a2 + c2 − b2

2σ

[
a

b− c
+ tanh

(
Φ(ξ)

2

)]−1

eiη.

(20)

By using of the (20) and Families 1, 2, 6, 10, 11, 15 and 16 give respectively as

u12(ξ) = ± 1

ε
√
−2σ

cot

(√
b2 − a2 − c2

2
(ξ + C)

)
eiη,

u13(ξ) = ∓ 1

ε
√
2σ

coth

(√
a2 + c2 − b2

2
(ξ + C)

)
eiη,

(21)

u14(ξ) = ± 1

ε
√
−2σ

coth

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])
eiη,

u15(ξ) = ∓ 1

2ε
√
2σ

[
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

]]−1

eiη,

(22)

u16(ξ) = ± c

(a− c)ε
√
2σ

[
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

]−1

eiη, (23)

u17(ξ) = ∓ 1

2ε
√
2σ

[
1

2
+

1

eb(ξ+C) − 1

]−1

eiη, u18(ξ) = ∓ a

2cε
√
2σ

[
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

]−1

eiη,

where ξ = ±1
ε

√
−2

(a2+c2−b2)(s2+sε)
(x− st), η = αx+ 1

ε t and s = 1−εβ
2β−αε .

Set III:

A0 = ±µ(a+ (c− b)p)

√
−s2 + sε

4σ
, A1 = 0,

B1 = ∓µ(2ap+ (c− b)p2 − b− c)

√
−s2 + sε

4σ
,

(24)

µ = µ, s = s, p = p, β = β, α =
(a2 + c2 − b2)(s2µ2 + εsµ2) + β2

2(εβ − 1)
, (25)

u(ξ) = ±µ

√
−s2 + sε

4σ

{
[a+ (c− b)p]− (2ap+ (c− b)p2 − b− c)

[
p+ tanh

(
Φ(ξ)

2

)]−1
}
eiη.

By using of the (25) and Families 1, 2 and 6-19 can be written respectively as

u19(ξ) = ±µ

√
−s2 + sε

4σ

{
[a+ (c− b)p]− [2ap+ (c− b)p2 − b− c]

[
p− a

b− c
+ (26)

√
b2 − a2 − c2

b− c
tan

(√
b2 − a2 − c2

2
(ξ + C)

)]−1
 eiη,
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Figure 2: Graphs of (e) and (f) real values and (g) and (h) imaginary values of u2 (15) are
demonstrated at a = 2, b = 3, c = 1, B1 = 2, ε = 1

3 , β = 2, σ = 1 and by considering the values (e)
and (g) −20 < x < 20,−10 < t < 10 and (f) and (h) −20 < x < 20, t = 1.

Figure 3: Graphs of (i) and (j) real values and (k) and (l) imaginary values of u3 (16) are demon-
strated at a = 0, b = 3, c = 0, B1 = 2, ε = 1

3 , β = 2, σ = 1 and by considering the values (i) and (k)
−20 < x < 20,−10 < t < 10 and (j) and (l) −20 < x < 20, t = 1

140



J. MANAFIAN, S. HEIDARI: PERIODIC AND SINGULAR KINK SOLUTIONS...

u20(ξ) = ±µ

√
−s2 + sε

4σ

{
[a+ (c− b)p]− [2ap+ (c− b)p2 − b− c]

[
p+

a

b− c
+ (27)

√
a2 + c2 − b2

b− c
tanh

(√
a2 + c2 − b2

2
(ξ + C)

)]−1
 eiη,

u21(ξ) = ∓bµ

√
−s2 + sε

4σ

{
p− (p2 + 1)

[
p+ tanh

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])]−1
}
eiη, (28)

u22(ξ) = ±aµ

√
−s2 + sε

4σ

{
1− 2p

[
p+ tanh

(
1

2
ln
[
− tanh

(a
2
(ξ + C)

)])]−1
}
eiη,

u23(ξ) = ±µ

√
−s2 + sε

4σ

{
[a+ (c− b)p]− [2ap+ (c− b)p2 − b− c]

[
p+

a

−b+
√
a2 + b2

+

√
2a

−b+
√
a2 + b2

tanh

(√
2a

2
(ξ + C)

)]−1
 eiη,

u24(ξ) = ±µ

√
−s2 + sε

4σ
ka

{
1− 2(p− 1)

[
p+ eka(ξ+C) − 1

]−1
}
eiη, (29)

Figure 4: Graphs of (m) and (n) real values and (o) and (p) imaginary values of u5 (17) are
demonstrated at a = 2, b = −2, c = 2, k = 2, B1 = 2, ε = 1

3 , β = 2, σ = 1 and by considering the
values (m) and (o) −20 < x < 20,−10 < t < 10 and (n) and (p) −20 < x < 20, t = 1

u25(ξ) = ±µ

√
−s2 + sε

4σ
ka

1 + 2p− 2p(1 + p)

[
p+

ea(ξ+C) − 1

ea(ξ+C) − 1

]−1
 eiη,
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u26(ξ) = ±µ

√
−s2 + sε

4σ
×

×

[a+ (c− a)p]− [2ap+ (c− a)p2 − b− c]

[
p− (a+ c)eb(ξ+C) + 1

(a− c)eb(ξ+C) − 1

]−1
 eiη,

u27(ξ) = ±µ

√
−s2 + sε

4σ

a− [2ap− 2c]

[
p+

ea(ξ+C) − c

a

]−1
 eiη,

u28(ξ) = ∓µ

√
−s2 + sε

4σ

{
c+ [2ap+ 2c]

[
p+ 1 + e−c(ξ+C)

]−1
}
eiη,

u29(ξ) = ±bµ

√
−s2 + sε

4σ

{
[−1 + 2p] + [2p− 2p2]

[
p+

1

eb(ξ+C) − 1

]−1
}
eiη,

u30(ξ) = ±bµ

√
−s2 + sε

4σ

[a+ 2pc]− 2p[a+ cp]

[
p+

aea(ξ+C)

cea(ξ+C) − 1

]−1
 eiη.

u31(ξ) = ±2cµ

√
−s2 + sε

4σ
[p+ c(ξ + C)]−1 eiη,

u32(ξ) = ±2cpµ

√
−s2 + sε

4σ

{
1− p

[
p+

1

c(ξ + C)

]−1
}
eiη,

u33(ξ) = ±µ

√
−s2 + sε

4σ

[c+ cp]− [2cp+ cp2 − c]

[
p+ 1 +

√
2 tanh

(√
2a

2
(ξ + C)

)]−1
 eiη,

where ξ = µ(x− st), η =
(
(a2+c2−b2)(s2µ2+εsµ2)+β2

2(εβ−1)

)
x+ βt and s = 1−εβ

2β−αε .

Set IV:

β = β, s = s, p = 0, µ = ± 2A1

b− c

√
− σ

s2 + εs
, A0 =

aA1

b− c
, A1 = A1, B1 = 0, (30)

α = −2(a2 + b2 − c2)σA2
1 − β2(b− c)2

(b− c)2(εβ − 1)
, u(ξ) = A1

[
a

b− c
+ tanh

(
Φ(ξ)

2

)]
eiη. (31)

By using of the (31) and Families 1, 2, 6, 8, 10, 11 and 15-18 get respectively as

u34(ξ) = A1

√
b2 − a2 − c2

b− c
tan

(√
b2 − a2 − c2

2
(ξ + C)

)
eiη, (32)

u35(ξ) = −A1

√
a2 + c2 − b2

b− c
tanh

(√
a2 + c2 − b2

2
(ξ + C)

)
eiη, (33)

u36(ξ) = A1 tanh
(
1
2 ln

[
tan

(
b
2(ξ + C)

)])
eiη,

u37(ξ) =
A1a

√
2

−b+
√
a2+b2

tan
(√

2a
2 (ξ + C)

)
eiη,

(34)

142



J. MANAFIAN, S. HEIDARI: PERIODIC AND SINGULAR KINK SOLUTIONS...

Figure 5: Graphs of (q) and (r) real values and (s) and (t) imaginary values of u9 (18) are demon-
strated at a = 0, b = 2, c = 2, B1 = 2, ε = 1

3 , β = 2, σ = 1 and by considering the values (q) and (s)
−20 < x < 20,−10 < t < 10 and (r) and (t) −20 < x < 20, t = 1.

u38(ξ) = A1

[
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

]] eiη, u39(ξ) = A1

[
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

]
eiη, (35)

u40(ξ) = A1

[
1

2
+

1

eb(ξ+C) − 1

]
eiη, u41(ξ) = A1

[
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

]
eiη,

u42(ξ) = A1c(ξ + C)eiη, u43(ξ) =
A1

c(ξ + C)
eiη, u44(ξ) = A1

√
2 tanh

(√
2a

2
(ξ + C)

)
eiη,

where ξ = ±2A1
b−c

√
− σ

s2+εs
(x− st), η =

(
−2(a2+c2−b2)σA2

1−β2(b−c)2

(b−c)2(εβ−1)

)
x+ βt and s = 1−εβ

2β−αε .

Set V:

p =
1

b− c

(√
a2 + c2 − b2

3
+ a

)
, µ =

1

ε

√
−2

(a2 + c2 − b2)(s2 + εs)
, A0 = ± 1

ε
√
6σ

, (36)

s = s, β =
1

ε
, A1 = 0, B1 = ± 1

(b− c)ε

√
2(a2 + c2 − b2)

9σ
, α = α, (37)

u(ξ) =

{
± 1

ε
√
6σ

± 1
(b−c)ε

√
2(a2+c2−b2)

9σ

[
1

b−c

(√
a2+c2−b2

3 + a

)
+ tanh

(
Φ(ξ)
2

)]−1
}
eiη,

By using of the (37) and Families 1, 2, 6, 10, 11, 15, 16, 18 and 19 give respectively as

u45(ξ) =

{
± 1

ε
√
6σ

± 1
ε

√
2(a2+c2−b2)

9σ ×

×
[
a2+c2−b2)

3 +
√
b2 − a2 − c2 tan

(√
b2−a2−c2

2 (ξ + C)
)]−1

}
eiη,

(38)
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u46(ξ) =

{
± 1

ε
√
6σ

± 1
ε

√
2(a2+c2−b2)

9σ ×

×
[
a2+c2−b2)

3 −
√
a2 + c2 − b2 tanh

(√
a2+c2−b2

2 (ξ + C)
)]−1

}
eiη,

(39)

u47(ξ) =

{
± 1

ε
√
6σ

± 1

ε

√
− 2

9σ

[
1√
−3

+ tanh

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])]−1
}
eiη, (40)

u48(ξ) =

± 1

ε
√
6σ

∓ 1

ε

√
2

9σ

[
− 1

2
√
3
− 1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

]]−1
 eiη, (41)

u49(ξ) =

± 1

ε
√
6σ

± c

(a− c)ε

√
2

9σ

[
c

(a− c)
√
3
+

a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

]−1
 eiη,

u50(ξ) =

± 1

ε
√
6σ

∓ 1

2ε

√
2

9σ

[
1

2
√
3
− c

b− c
+

(b+ c)eb(ξ+C) + 1

(b− c)eb(ξ+C) − 1

]−1
 eiη,

u51(ξ) =

± 1

ε
√
6σ

± b

(b+ a)ε

√
2

9σ

[
b

(b+ a)
√
3
− a

b+ a
+

(b+ c)eb(ξ+C) + 1

(b− c)eb(ξ+C) − 1

]−1
 eiη,

u52(ξ) =

± 1

ε
√
6σ

∓ a

2cε

√
2

9σ

[
− a

2c
√
3
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

]−1
 eiη,

u53(ξ) =

{
± 1

ε
√
6σ

∓ a

2cε

√
2

9σ

[
− a

2c
√
3
− a

2c
+

1

c(ξ + C)

]−1
}
eiη,

u54(ξ) =

± 1

ε
√
6σ

∓ a

2cε

√
4

9σ

[
−
√

2

3
− 1 +

√
2 tan

(√
2c

2
(ξ + C)

)]−1
 eiη,

where ξ = 1
ε

√
−2

(a2+b2−c2)(s2+εs)
(x− st), η = αx+ 1

ε t and s = 1−εβ
2β−αε .

Set VI:

s = s, β =
1

ε
, p =

a

b− c
, µ = ± 1

ε
√
(a2 + c2 − b2)(s2 + εs)

, A0 = 0, (42)

A1 = ± b− c

ε
√
−4σ(a2 + c2 − b2)

, B1 = ±
√
a2 + c2 − b2

ε
√
−4σ(b− c)

, α = α, (43)

u(ξ) =

{
A1

[
a

b− c
+ tanh

(
Φ(ξ)

2

)]
+B1

[
a

b− c
+ tanh

(
Φ(ξ)

2

)]−1
}
eiη.

By using of the (43) and Families 1, 2, 6, 10, 11, 15 and 16 can be written respectively as

u55(ξ) = ± 1

ε
√
4σ

{
tan

(√
b2 − a2 − c2

2
(ξ + C)

)
+ cot

(√
b2 − a2 − c2

2
(ξ + C)

)}
eiη, (44)

u56(ξ) = ∓ 1

ε
√
4σ

{
tanh

(√
a2 + c2 − b2

2
(ξ + C)

)
+ coth

(√
a2 + c2 − b2

2
(ξ + C)

)}
eiη, (45)
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u57(ξ) = ± 1

ε
√
4σ

{
tanh

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])
+ coth

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])}
eiη,

(46)

u58(ξ) = ∓ 1

ε
√
−4σ

2

(
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

])+
1

2

(
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

])−1
 eiη, (47)

u59(ξ) = ± 1

ε
√
−4σ

{
a− c

c

(
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

)
+

+
c

a− c

(
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

)−1
 eiη,

u60(ξ) = ∓ 1

ε
√
−4σ

{
2

(
1

2
+

1

eb(ξ+C) − 1

)
+

1

2

(
1

2
+

1

eb(ξ+C) − 1

)−1
}
eiη,

u61(ξ) =

√
α+ β2 − εαβ

−4σ

2c

a

(
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

)
+

a

2c

(
− a

2c
+

aea(ξ+C)

cea(ξ+C) − 1

)−1
 eiη,

where ξ = ± 1

ε
√

(a2+c2−b2)(s2+εs)
(x− st), η = αx+ 1

ε t and s = 1−εβ
2β−αε .

Set VII:

α = α, β =
1

ε
, p = p, µ =

1

ε

√
−2

(a2 + c2 − b2)(s2 + εs)
, A0 = ± a+ (c− b)p

ε
√
2σ(a2 + c2 − b2)

, (48)

s = s, A1 = ± b− c

ε
√
2σ(a2 + c2 − b2)

, B1 = 0, u(ξ) = A0 +A1

[
p+ tanh

(
Φ(ξ)

2

)]
eiη. (49)

By using of the (20) and Families 1, 2, 6, 10, 11, 15 and 18 give respectively as

u62(ξ) = ± eiη

ε
√
−2σ

tan

(√
b2 − a2 − c2

2
(ξ + C)

)
,

u63(ξ) = ∓ eiη

ε
√
−2σ

tanh

(√
a2 + c2 − b2

2
(ξ + C)

)
,

(50)

u64(ξ) = ± eiη

ε
√
−2σ

[
p+ tanh

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])]
,

u65(ξ) = ∓ eiη

ε
√
2σ

eka(ξ+C)[
eka(ξ+C) − 1

] , (51)

u66(ξ) = ∓2a− c

ε
√
2σ

(a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1
eiη, u67(ξ) = ∓ 1

ε
√
2σ

(
1 +

2

eb(ξ+C) − 1

)
eiη, (52)

u68(ξ) = ∓ 1

ε
√
2σ

(
1− 2c

a

aea(ξ+C)

cea(ξ+C) − 1

)
eiη, u69(ξ) = ∓ 2

aε
√
2σ(ξ + C)

,

where ξ = 1
ε

√
−2

(a2+c2−b2)(s2+εs)
(x− st), η = αx+ 1

ε t and s = 1−εβ
2β−αε .
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Set VIII:

p =
a

b− c
, µ = ±1

ε

√
−1

2(a2 + c2 − b2)(s2 + εs)
, A0 = 0,

A1 = ± (b− c)

ε
√
8σ(a2 + c2 − b2)

, β =
1

ε
, α = α,

(53)

B1 = ±
√
a2 + c2 − b2√
8σε(b− c)

, s = s,

u(ξ) =

{
A1

[
p+ tan

(
Φ(ξ)

2

)]
+B1

[
p+ tan

(
Φ(ξ)

2

)]−1
}
eiη.

(54)

By using of the (53) and Families 1, 2, 6, 10, 11, 15, 16 and 19 can be written respectively
as

u70(ξ) = ± 1√
−8σ

{
tan

(√
b2 − a2 − c2

2
(ξ + C)

)
+ cot

(√
b2 − a2 − c2

2
(ξ + C)

)}
eiη, (55)

u71(ξ) = ∓ 1√
8σ

{
tanh

(√
a2 + c2 − b2

2
(ξ + C)

)
+ coth

(√
a2 + c2 − b2

2
(ξ + C)

)}
eiη, (56)

u72(ξ) = ± 1√
−8σ

{
tanh

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])
+ coth

(
1

2
ln

[
tan

(
b

2
(ξ + C)

)])}
eiη,

(57)

u73(ξ) = ∓ 1√
8σ

2

(
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

])+
1

2

(
−1

2
+

eka(ξ+C)[
eka(ξ+C) − 1

])−1
 eiη, (58)

u74(ξ) = ± 1√
8σ

{
a− c

c

(
a

a− c
− (a+ b)eb(ξ+C) − 1

(a− b)eb(ξ+C) − 1

)
+

+ c
a−c

(
a

a− c
− (a+ c)ec(ξ+C) − 1

(a− c)ec(ξ+C) − 1

)−1
 eiη,

u75(ξ) = ∓ 1√
8σ

2

(
1

2
+

1[
eb(ξ+C) − 1

])+
1

2

(
1

2
+

1[
eb(ξ+C) − 1

])−1
 eiη,

u76(ξ) = ∓ 1√
8σ

2c

a

(
− a

2c
+

aea(ξ+C)[
cea(ξ+C) − 1

])+
a

2c

(
− a

2c
+

aea(ξ+C)[
cea(ξ+C) − 1

])−1
 eiη,

u77(ξ) = ∓ 1√
σ

1

4

(
−a

√
2

2c
tanh

(√
2a

2
(ξ + C)

))
+

1

2

(
−a

√
2

2c
tanh

(√
2a

2
(ξ + C)

))−1
 eiη,

where ξ = ±1
ε

√
−1

2(a2+c2−b2)(s2+εs)
(x− st), η = αx+ 1

ε t and s = 1−εβ
2β−αε .
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3.2 Physical Interpretations of the Solutions

In this section, we depict the graph and signify the obtained solutions to the Hamiltonian
amplitude equation. Now, we will discuss all possible physical significance for parameter. The
crucial advantage of the new approaches presented in this paper against the generalized and
improved (G’/G)-expansion method is that the method provides more general and abundant
exact travelling wave solutions with much real parameter. The exact solutions of ODEs and
PDEs have its important significance to disclose the internal mechanism of the complex physical
phenomena. Apart from the physical application, the close-form solutions of nonlinear evolution
equations assist the numerical solvers to compare the accuracy of their results and help them in
the stability analysis.

Remark 1. In Figures 1-5, we plot three dimensional graphics of real and imaginary values
of (15), (16), (17) and (18) respectively, which denote the dynamics of solutions with appro-
priate parametric selections. We plot three dimensional graphics of Figs 1-5, when −20 < x <
20,−10 < t < 10. To the best of our knowledge, these optical soliton solutions have not been
submitted to literature in advance. The analytical solutions and figures obtained in this paper
give us a different physical interpretation for the Hamiltonian amplitude equation. Solution
u1 (fig. 1) of the Hamiltonian amplitude equation represents the exact periodic traveling wave
solution. Periodic solutions are traveling wave solutions that are periodic, such as cos(x+ t).

Remark 2. Figures 2 and 3 (u2, u3), represent the exact soliton solutions of the Hamiltonian
amplitude equation. Solitons are special kinds of solitary waves. Solitons have a remarkable
property that keeps its identity upon interacting with other solitons. Soliton solutions have
particle-like structures, for example, magnetic monopoles, and extended structures, like, domain
walls and cosmic strings, that have implications in cosmology of the early universe. The other
figures are ignored for simplicity.

Remark 3. Figures 4 and 5 (u5, u9), represents the singular kink-type traveling wave solution
of the Hamiltonian amplitude equation. For convenience the other figures are omitted.

• Note that: All the obtained results have been checked with Maple 13 by putting them
back into the original equation and found correct.

4 Conclusions

In this article, the new approaches of the improved tanh (Φ(ξ)/2)-expansion method has suc-
cessfully been implemented to investigate the nonlinear partial differential equation, namely, the
Hamiltonian amplitude equation. The exact particular solutions containing five types hyperbolic
function solution, trigonometric function solution, exponential solution, logarithmic solution and
rational solution. Abundant exact travelling wave solutions including solitons, kink, periodic and
rational solutions are attained. It is worth mentioning that some of newly obtained solutions are
identical to already published results. It has been shown that the applied methods are effective
and more wide-ranging than the generalized and improved (G’/G)-expansion method because it
gives many new solutions. Therefore, this method can be applied to study many other nonlinear
partial differential equations which frequently arise in engineering, mathematical physics and
other scientific real time application fields.
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