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Abstract. In this paper we construct a new continuous recurrent neural network from the fixed points given a
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Corresponding author: Prof. Franco Rubio López, Department of Mathematics, National University of Tru-

jillo, Avenue Juan Pablo II S/N, Trujillo, Peru, e-mail: frubio@unitru.edu.pe

Received: 22 June 2020; Revised: 25 July 2020; Accepted: 30 July 2020; Published: 30 August 2020.

1 Introduction

Since 1982 when J. Hopfield introduced the first neural network (Hopfield, 1982, 1984), dif-
ferent generalizations of this type of neural network have been developed, due to the multiple
applications in signal processing, associative memories, pattern recognition, optimization, etc.
This also motivated the analysis of the dynamics of a neural network, which is mainly reflected
in the concept of stability of a neural network.

A continuous Hopfield neural network of dimension ”N” is a neural network totally connected
with N units of continuous value (Shihuan et al., 2004; Hopfield, 1984; Talaván & Yáñez, 2005),
whose dynamics is given by:

Ci
dui
dt

=
N∑
j=1

Tijvj −
ui
Ri

+ Ii, vi = gi(ui), ∀i = 1, ..., N,

where Ci > 0, Ri > 0 and Ii > 0 are capacity, resistance and bias, respectively; and Tij are the
synaptic interconnection weights of the j-th neuron with the i-th neuron.

In this paper, a continuous fully connected recurrent neural network is constructed, us-
ing quadratic polynomial functions constructed by (Rubio & Hernández, 2015, 2017, 2017;
Rubio et al., 2017, 2019); that have fixed attractor points given a priori. Furthermore, the
stability of this continuous neural network is guaranteed, and an application to pattern recog-
nition is given.

2 Quadratic function

In this section are given some concepts about a fixed point application and some conclusions
obtained by Rubio & Hernández (2015).
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Definition 1. A fixed point of the application F : U ⊂ Rn −→ Rn, is a point a ∈ U such that
F (a) = a, Lages (2014).

Now, it is necessary to formulate the theorem of uniqueness and existence of a fixed point
Burden (1985).

Theorem 1. Let U = {(x1, x2, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi,∀i = 1, n}, such that ai, bi ∈ R
∀i = 1, n, are constants and F : U ⊂ Rn −→ Rn is an application C1(U), F (x) ∈ U , ∀x ∈ U ,
then F have a fixed point in U , also assume the existence of a constant k < 1 with∣∣∣∣∂Fi(x)

∂xj

∣∣∣∣ ≤ k

n
, ∀x ∈ U, ∀i, j = 1, n,

then the sequence {X(t)}∞t=0 which is defined by X(0) ∈ U and

X(t) = F (X(t−1)), t ≥ 1

it converge to a unique fixed point a ∈ U and∥∥∥X(t) − a
∥∥∥
∞

<
kt

1− k

∥∥∥X(1) −X(0)
∥∥∥
∞
.

According to Feigenbaum (1980), the fixed points, which are the limit of a convergent se-
quence, these are called attractor fixed points; otherwise they are designate repellent fixed
points.

Some results obtained by Rubio & Hernández (2015) are presented, let x0, x1 ∈ R two points,
x0 < x1 these are fixed points given a priori and the quadratic function is determined by

f(x) = Ax2 +Bx+ C (1)

where: 

A =
ym − xm

(xm − x1)(xm − x0)

B =
ym(x0 + x1)− x0x1 − x2m

(x1 − xm)(xm − x0)

C =
x0x1(ym − xm)

(xm − x1)(xm − x0)

(2)

The point (xm, ym) is given in such a way that (x0, y0), (x1, y1) and (xm, ym) are non-collinear.
By using theorem (5.1) in (Rubio & Hernández, 2015), with xm = x0 − ϵ, ym = x0, ϵ = 0.1,

we have:

(a) x0 is an attractor fixed point.

(b) x1 is a repellent fixed point. (3)
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Figure 1: Fixed point x0, attractor

By using theorem (5.4) in (Rubio & Hernández, 2015), with xm = x1 + ϵ, ym = x1, ϵ = 0.1,
we have:

(a) x0 is a repellent fixed point.

(b) x1 is an attractor fixed point. (4)

Figure 2: Fixed point x1, attractor
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3 Construction of the Continuous Quadratic Recurrent Neural
Network

Using the quadratic functions given in the previous section, a new Continuous Quadratic Re-
current neural network is constructed for N neurons, whose dynamics are given by the System
of Ordinary Differential Equations:

dxi(t)

dt
= −xi(t)

a
+ b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N, (5)

where: a, b ∈ R, a > 0, b > 0, fj are functions given by (1) and (2); wij are the synaptic weights,
which are determined according to (Rubio & Hernández, 2017).

Actually, for our study, we are considering the space of Hamming Hn = {−1, 1}n and Xp ∈
Hn. Now, let Xp = (x1p, x

2
p, ..., x

N
p ) ∈ HN such that:

fj(x
j
p) = xjp, ∀j = 1, ..., N. (6)

the critical points of the system (5) are given by:

dxi(t)

dt
= 0, ∀i = 1, ..., N,

then

0 = −xi(t)

a
+ b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N

xi(t)

a
= b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N (7)

Now consider the curve
xj(t) = xjp, ∀j = 1, ..., N

then, by (Rubio & Hernández, 2015, 2017, 2017):

N∑
j=1

wijfj(x
j
p) =

N∑
j=1

wijx
j
p = xip, ∀i = 1, ..., N

Since (7):
xi(t)

a
= bxip,

Therefore:
xi(t) = abxip, ∀i = 1, ..., N (8)

Theorem 2. Let Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , where xip are fixed points of fi given by (1) and

(2), a, b ∈ R, a > 0, b > 0. If ab = 1, then Xp ∈ HN is a critical point of recurrent neural
network quadratic continuous:

dxi(t)

dt
= −xi(t)

a
+ b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N.

Proof. In particular, if a = 2 and b = 1
2 , then ab = 1. By (8) we have

xi(t) = xip, ∀i = 1, ..., N.

Therefore, Xp is a critical point of (5).
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4 Stability

In this section we study the stability of the continuous quadratic recurrent neural network:

dxi(t)

dt
= −xi(t)

a
+ b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N.

Let F : RN → RN be an application, which is defined by F (x) = (F1(x), F2(x), ..., FN (x)),
where:

Fi(x(t)) = −xi(t)

a
+ b

N∑
j=1

wijfj(xj(t)), ∀i = 1, ..., N (9)

and
fj(xj) = Ajx

2
j +Bjxj + Cj , ∀j = 1, ..., N

are functions given by (1).

Moreover, note that the application F previously defined is differentiable of class C∞(RN ).

Theorem 3. Let F : RN → RN defined by (9). Then, the Jacobian matrix of F is given by:

JF (x) = (
∂Fi(x)

∂xk
)NxN

where:

∂Fi(x)

∂xk
=


− 1

a + (2Aixi +Bi)wiib, i = k

(2Akxk +Bk)wikb, i ̸= k
(10)

Proof. By (9):

Fi(x(t)) = −xi(t)

a
+ b

N∑
j=1

wij [Ajx
2
j +Bjxj + Cj ], ∀i = 1, ..., N

Then:

1. To i = k:

∂Fi(x)

∂xi
= −1

a
+ b

N∑
j=1

wij
∂

∂xi
[Ajx

2
j +Bjxj + Cj ]

∂Fi(x)

∂xi
= −1

a
+ (2Aixi +Bi)wiib

2. To i ̸= k:

∂Fi(x)

∂xk
=

∂

∂xk
(−xi

a
) + b

N∑
j=1

wij
∂

∂xi
[Ajx

2
j +Bjxj + Cj ]

= bwik(2Akxk +Bk)

By (1) and (2):

∂Fi(x)

∂xk
=


− 1

a + (2Aixi +Bi)wiib, i = k

(2Akxk +Bk)wikb, i ̸= k
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Theorem 4. Let F : RN → RN defined by (9), Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , fj(x

j
p) = xjp,

∀j = 1, ..., N , attractor fixed points. Then:

JF (Xp) = −1

a
IN + bM (11)

where IN is the identity matrix of order N, and:

M =

 (2A1x
1
p +B1)w11 · · · (2ANxNp +BN )w1N
...

. . .
...

(2A1x
1
p +B1)wN1 · · · (2ANxNp +BN )wNN

 (12)

Proof. By (10):

∂Fi(x)

∂xk
=


− 1

a + (2Aixi +Bi)wiib, i = k

(2Akxk +Bk)wikb, i ̸= k

Then:

JF (Xp) =

−
1
a + (2A1x

1
p +B1)w11b · · · (2ANxNp +BN )w1Nb
...

. . .
...

(2A1x
1
p +B1)wN1b · · · − 1

a + (2ANxNp +BN )wNNb



= −1

a

1 0 · · · 0
...

...
. . .

...
0 0 · · · 1

+ b

 (2A1x
1
p +B1)w11 · · · (2ANxNp +BN )w1N
...

. . .
...

(2A1x
1
p +B1)wN1 · · · (2ANxNp +BN )wNN


Therefore:

JF (Xp) = −1

a
IN + bM

In this paper will be use the matricial norm

∥A∥∞ = max
1≤j≤n

n∑
k=1

|Ajk|, with A = (Aij)n×n

Theorem 5. Let F : RN → RN defined by (9), Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , fj(x

j
p) = xjp,

∀j = 1, ..., N , attractor fixed points. Then:

||M ||∞ < ||W ||∞. (13)

Proof. By (12):
N∑
j=1

|(2Ajx
j
p +Bj)wij | =

N∑
j=1

|2Ajx
j
p +Bj ||wij |

<

N∑
j=1

|wij |, ∀i = 1, ..., N

because xjp is an attractor point of fj , ∀j = 1, ..., N .
Therefore:

||M ||∞ < ||W ||∞.
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Corollary 1. Let F : RN → RN defined by (9); Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , fj(x

j
p) = xjp,

∀j = 1, ..., N , attractor fixed points. Then:

||M ||∞ < 1. (14)

Proof. By (Rubio & Hernández (2017)), the matrix of synaptic weights W fulfills: ||M ||∞ = 1.
And by theorem (5) we have:

||M ||∞ < ||W ||∞.

Therefore:
||M ||∞ < 1.

Theorem 6. Let F : RN → RN defined by (8); Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , fj(x

j
p) = xjp,

∀j = 1, ..., N , attractor fixed points. Then:

||JF (Xp)||∞ <
1

a
+ b (15)

Proof. By (11):

JF (Xp) = −1

a
IN + bM

Then:

||JF (Xp)||∞ = || − 1

a
IN + bM ||∞

≤ | − 1

a
|||IN ||∞ + |b|||M ||∞

=
1

a
+ b||M ||∞

<
1

a
+ b, por (14)

Therefore:

||JF (Xp)||∞ <
1

a
+ b.

Next we show a result that ensures that Xp is an attractor fixed point of the continuous
quadratic recurrent neural network.

Theorem 7. Let F : RN → RN defined by (9), Xp = (x1p, x
2
p, ..., x

N
p ) ∈ HN , fj(x

j
p) = xjp,

∀j = 1, ..., N , attractor fixed points, a, b ∈ R, con a ≥ 2, ab = 1. Then:

||JF (Xp)||∞ < 1 (16)

Proof. From theorem (6) we have:

||JF (Xp)||∞ <
1

a
+ b.

without loss of generality, to values a = 2 and b = 1
a , we have:

||JF (Xp)||∞ <
1

2
+

1

2
= 1.

Therefore:
||JF (Xp)||∞ < 1.
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5 Examples

This section we gives some examples of our continuous quadratic recurrent neural network.
Using (1), (2), (3) and (4), with x0 = −1, x1 = 1, we construct the quadratic functions:

(a) f+(x) = −0.4762x2 + x+ 0.4762, with x1 = 1, attractor fixed point.

(b) f−(x) = 0.4762x2 + x− 0.4762, with x0 = −1, attractor fixed point.

Example 1. Let Xp = (−1, 1) be the fixed point given previously. Then the synaptic weight
matrix is:

W =


1

2
−1

2

−1

2

1

2


and the system of ordinary differential equations (5) that determines the dynamics of the neural
network is: 

dx1
dt

= −x1
2

+
1

4
f1(x1)−

1

4
f2(x2)

dx2
dt

= −x2
2

− 1

4
f1(x1) +

1

4
f2(x2)

(17)

where:
f1 (x) = f− (x) , f2 (x) = f+ (x)

Now, let’s consider the initial value problem:

dx1
dt

= −x1
2

+
1

4
f1(x1)−

1

4
f2(x2)

dx2
dt

= −x2
2

− 1

4
f1(x1) +

1

4
f2(x2)

Initial Condition :
x1 (0) = −0.75 , x2 (0) = −2

(18)

and using the Runge - Kutta scheme of 4th order, the numerical solution to problem (18) is
obtained.

Figure 3: Numerical solution converges to the attractor fixed point Xp.
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Example 2. Let Xp = (1,−1, 1) be the fixed point given previously. Then the synaptic weight
matrix is:

W =



1

3
−1

3

1

3

−1

3

1

3
−1

3

1

3
−1

3

1

3


and the system of ordinary differential equations (5) that determines the dynamics of the neural
network is: 

dx1
dt

= −x1
2

+
1

6
f1(x1)−

1

6
f2(x2) +

1

6
f3(x3)

dx2
dt

= −x2
2

− 1

6
f1(x1) +

1

6
f2(x2)−

1

6
f3(x3)

dx3
dt

= −x3
2

+
1

6
f1(x1)−

1

6
f2(x2) +

1

6
f3(x3)

(19)

where:
f1 (x) = f+ (x) , f2 (x) = f− (x) , f3 (x) = f+ (x)

Now, let’s consider the initial value problem:

dx1
dt

= −x1
2

+
1

6
f1 (x1)−

1

6
f2 (x2) +

1

6
f3 (x3)

dx2
dt

= −x2
2

− 1

6
f1 (x1) +

1

6
f2 (x2)−

1

6
f3 (x3)

dx3
dt

= −x3
2

+
1

6
f1 (x1)−

1

6
f2 (x2) +

1

6
f3 (x3)

Initial Condition
x1 (0) = −0.75 , x2 (0) = −2 , x3 (0) = −1

(20)

and using the Runge - Kutta scheme of 4th order, the numerical solution to problem (20) is
obtained.

Figure 4: Numerical solution converges to the attractor fixed point Xp.
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Example 3. In this example we give an application of our continuous quadratic recurrent neural
network to the recognition of a pattern.

Consider the pattern given by the figure

Figure 5: Pattern

which is represented using 15 neurons:

Xp = [1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1, 1,−1]

Synaptic weights are given by:

1. wii =
1

15
, ∀i = 1, 2, . . . , 15.

2. If
xjp
xip

> 0, then wij =
1

15
.

3. If
xjp
xip

< 0, then wij = − 1

15
.

Now, let’s consider a disturbance of the pattern, given by the figure:

Figure 6: Disturbed Pattern

which is represented using 15 neurons:

X0 = [−1, 1,−1, 1,−1, 1, 1, 1, 1, 1,−1, 1, 1,−1,−1]

Initial value problem is given by:

dxi
dt

= −xi
2

+
1

2

15∑
j=1

wijfj(xj), ∀i = 1, . . . , 15

Initial Conditions :
x (0) = X0

(21)
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where:

x(t) = (x1(t), . . . , x15(t))

f1 (x) = f3 (x) = f7 (x) = f9 (x) = f10 (x) = f12 (x) = f14 (x) = f+ (x)

f2 (x) = f4 (x) = f5 (x) = f6 (x) = f8 (x) = f11 (x) = f13 (x) = f15 (x) = f− (x)

Using the Runge - Kutta scheme of 4th order, we obtain the numerical solution to the problem
(21); that allows to restore the initial pattern, see figure:

Figure 7: Result of the continuous recurrent quadratic neural network.

6 Conclusion

In this paper we construct a new continuous quadratic recurrent neural network with a fixed
point attractor given previously, using the fixed points of quadratic functions given by (1) – (4).
Using (8), values are assigned to the elements of the matrix W that guarantee that ∥W∥∞ = 1.

In theorem 5 it is proved that the norm of the Jacobian matrix associated with the neural
network at fixed point Xp, ∥JF (Xp) ∥∞ < 1 , which guarantees the stability of the fixed point;
methodology different from that used by Hopfield (1984), which makes use of the energy function
associated to the system.

This new continuous quadratic recurrent neural network behaves as auto-associative memory;
allowing to restoration objects from certain information; as in the recognition of images, sounds;
as in the application example to the recognition of a pattern.
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