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1 Introduction

Optimal control problems for the coefficients of the partial differential equations are of great
applied importance, since these coefficients characterize the properties of the medium under
consideration. Moreover, this type optimal control problems are closely related to the in-
verse problems of determining the coefficients of partial differential equations (Yuldashev, 2019;
Guliyev et al., 2017; Kabanikhin & Iskakov, 2001; Tagiev & Habibov, 2016; Tagiev, 2012, 2010;
Li & Lou, 2012). Note that such problems are nonlinear and, generally speaking, ill-posed prob-
lems. When the process under consideration is described by the boundary value problem with
a nonlocal condition, then the study of the solvability of this problem and, accordingly, the
problem of optimal control becomes much more complicated.

In this paper, the inverse problem of determining the coefficients of the equation is considered
and this problem is reduced to the optimal control problem for the second-order hyperbolic
equation with a nonlocal condition when the control functions are present in the coefficients of
the first-order derivatives. An existence theorem for the optimal control is proved, the necessary
optimality condition is derived and the gradient of the considered functional is calculated.

2 Formulation of the problem

Consider the problem of determining a pair of functions (u(x, t), ϑ(x)) from the following rela-
tions

∂2u

∂t2
−∆u+

3∑
i=1

ϑi(x)
∂u

∂xi
= f(x, t), (x, t) ∈ Q = Ω× (0, T ), (1)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ Ω, (2)
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∂u

∂ν

∣∣∣∣
S

=

∫
Ω
K(x, y)u(y, t)dy, (x, t) ∈ S, (3)

∫ T

0
R(x, t)u(x, t)dt = φ(x), x ∈ Ω, (4)

where T is a given positive number; Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω;
S = ∂Ω× (0, T ) is a lateral surface of the cylinder Q ; ν is an outward normal to the boundary
∂Ω.

If the functions f(x, t), ϑ(x) = (ϑ1(x), ϑ2(x), ϑ3(x)), u0(x), u1(x), K(x, y) are given, then we
obtain direct problem (1)-(3) on determination of the function u(x, t).

If ϑ(x) is unknown function, then we set additional condition (4). By this way we come to
inverse problem (1)-(4) on determination of the pair (u(x, t), ϑ(x)).

Suppose that f ∈ L2(Q), u0 ∈ W 1
2 (Ω), u1 ∈ L2(Ω), R ∈ L∞(Q), φ ∈ L2(Ω), K(x, y) ∈

L∞(∂Ω× Ω) are given functions.
Problem (1)-(4) is reduced to the following optimal control problem: find such a function

ϑ(x) from the set

V =
{
ϑ(x) : ϑ(x) = (ϑ1(x), ϑ2(x), ϑ3(x)), ϑi(x) ∈ C1(Ω̄) : |ϑi(x)| ≤Mi,

ϑi(x)|∂Ω = 0,

∣∣∣∣∂ϑi(x)∂xk

∣∣∣∣ ≤Mk
i , i, k = 1, 2, 3 on Ω

}
, (5)

which delivers a minimum of functionality

I(ϑ) =
1

2

∫
Ω

[∫ T

0
R(x, t)u(x, t;ϑ)dt− φ(x)

]2
dx (6)

subject to restrictions (1)-(3), where u(x, t;ϑ) is a solution to problem (1)-(3) at ϑ = ϑ(x),
Mi,M

k
i , i, k = 1, 2, 3 are given positive numbers. This problem we call problem (1)-(3),(5),(6).

The vector function ϑ(x) is called a control, and V - a class of admissible controls. There
is a close connection between problems (1)-(3), (5), (6) and (1)-(4). Note that if min

ϑ∈V
I(ϑ) = 0,

then additional condition (4) is satisfied.
As a solution to boundary value problem (1)-(3) at each fixed control ϑ ∈ V we consider the

function from W 1
2 (Q) equaling to u0(x) at t = 0 and satisfying the integral identity∫ T

0

∫
Ω

(
−∂u
∂t

∂η

∂t
+∇u∇η +

3∑
i=1

ϑi
∂u

∂xi
η

)
dxdt−

−
∫ T

0

∫
∂Ω
η (x, t)

∫
Ω
K (x, y)u(y, t) dydsdt−

−
∫
Ω
u1(x)η(x, 0)dx =

∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt

(7)

at all η = η(x, t) from W 1
2 (Q), equaling to zero at t = T .

It follows from (Kozhanov & Pulkina, 2010) that under the adopted conditions, boundary
value problem (1)-(3) for each fixed control ϑ ∈ V has a unique generalized solution fromW 1

2 (Q)
and the estimate

∥u∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q)

]
(8)

is valid, moreover, this solution has the properties (Lions & Magenes, 1971)

u ∈ C
(
[0, T ] ,W 1

2 (Ω)
)
,
∂u

∂t
∈ C ([0, T ] , L2(Ω)) .
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Here and furthermore, c will denote various constants that do not depend on the values being
estimated and on the admissible controls.

3 On a solvability of problem (1)-(3), (5), (6)

Theorem 1. Let the conditions set in the formulation of problem (1)-(3), (5),(6) be fulfilled.

Then V∗ =

{
ϑ∗ ∈ V : I(ϑ∗) = min

ϑ∈V
I(ϑ)

}
is not empty, weekly compact in (W 1

2 (Ω))
3 and any

minimizing sequence {ϑk} converges weekly to the set V∗in (W 1
2 (Ω))

3, where (W 1
2 (Ω))

3 =W 1
2 (Ω)×

W 1
2 (Ω)×W 1

2 (Ω).

Proof. It is clear that the set V defined by relation (5) is weekly compact in the space (W 1
2 (Ω))

3.
Let us show that functional (6) is weekly continuous in (W 1

2 (Ω))
3 on the set V . Let ϑ ∈ V be

some element
{
ϑk
}

∈ V be an arbitrary sequence such that ϑk → ϑ weekly in (W 1
2 (Ω))

3 at
k → ∞. Hence, from the compactness of the embedding (W 1

2 (Ω))
3 ⊂ (L2(Ω))

3 (Ladyzhenskaya,
1973), follows that

ϑk → ϑ strongly in (L2(Ω))
3. (9)

Moreover taking into account the definition of the set V we see that

ϑk → ϑ strongly in (C1(Ω̄))3 (9′)

Due to the unique solvability of boundary value problem (1)-(3) to each control ϑk ∈ V
correspond the only solution uk = u(x, t;ϑk) of problem (1)-(3) and the estimation ∥uk∥W 1

2 (Q) ≤
c , ∀ k = 1, 2, ... is valid i.e. the sequence {uk} uniformly bounded in the norm of the space
W 1

2 (Q). Then it follows from the embedding theorems (Ladyzhenskaya, 1973) that a subsequence
{ukl} can be selected from the sequence {uk} such that for l → ∞

ukl → u strongly in L2(Q), (10)

∂ukl
∂t

→ ∂u

∂t
,
∂ukl
∂xi

→ ∂u

∂xi
weekly in L2(Q), (11)

where u = u(x, t) ∈ W 1
2 (Q) is some element. Let us show that u(x, t) = u(x, t;ϑ) i.e. the

function u(x, t) is a generalized solution to problem (1)-(3) corresponding to the control ϑ ∈ V.
It is clear that the identities∫ T

0

∫
Ω

(
−∂ukl

∂t

∂η

∂t
+∇ukl∇η +

3∑
i=1

ϑkli
∂ukl
∂xi

η

)
dxdt−

−
∫ T

0

∫
∂Ω
η (x, t)

∫
Ω
K (x, y)ukl(y, t) dydsdt−

∫
Ω
u1(x)η(x, 0)dx =

=

∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt, l = 1, 2...

(12)

are valid for all η = η(x, t) from W 1
2 (Q̄) equaling to zero at t = T .

Passing to limit in (12) at l → ∞ and using (9)-(11) we obtain that the function u(x, t) is
equal to u0(x) at t = 0 and satisfies to identity (7). From this and from the uniqueness of the
solution to problem (1)-(3) corresponding to the control ϑ ∈ V , it follows that u(x, t) = u(x, t;ϑ).

Using the uniqueness of the solution to problem (1)-(3) corresponding to the control ϑ ∈ V
it is easy to check that relations (10), (11) are valid not only for the subsequence {ukl}, but also
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for the entire sequence {uk}. Taking this into account, from (6) we obtain that I (ϑk) → I(ϑ)
at k → ∞, i.e. I(ϑ) is weekly continuous in (W 1

2 (Ω))
3 on the set V . Then, by virtue of Theorem

2 from Vasilyev (1981), we obtain that all the assertions of Theorem 1 are true. Theorem 1 is
proved.

To ensure the uniqueness of the solution to the optimal control problem, instead of functional
(6), we can consider a functional of the form

Iα(ϑ) = I(ϑ) + α

3∑
i=1

∥ϑi − ωi∥2W 1
2 (Ω) , (13)

where I(ϑ) is defined by equality (6), α > 0 is a given number, ω = (ω1, ω2, ω3) ∈
(
W 1

2 (Ω)
)3

is
a given function.

Theorem 2. Let the conditions of Theorem 1 and α > 0 be satisfied. Then there exists a dense
subset G of the space (W 1

2 (Ω))
3, such that for any ω ∈ G problem of minimizing functional (13)

on the set V under conditions (1)-(3) has a unique solution.

Proof. The functional I(ϑ) is bounded below and, by virtue of Theorem 1, is continuous on.
Moreover, the set V is closed and bounded in a uniformly convex Banach space (W 1

2 (Ω))
3.

Then the results of Ekland & Temam (1979) imply the assertion of Theorem 2. Theorem 2 is
proved.

4 Differentiability of functional (6)

Now let us investigate the differentiability of functional (6). Let ψ(x, t) = ψ(x, t;ϑ)be a gener-
alized solution from W 1

2 (Q) of the adjoint problem

∂2ψ

∂t2
−∆ψ −

3∑
i=1

∂

∂xi
(ϑiψ) =

∫
∂Ω
ψ(ξ, t)K(ξ, x)ds+R(x, t)

(∫ T

0
R(x, t)u(x, t)dt− φ(x)

)
,

(x, t) ∈ Q, (14)

ψ(x, T ) = 0,
∂ψ(x, T )

∂t
= 0, x ∈ Ω, (15)

∂ψ

∂ν

∣∣∣∣
S

= 0, (x, t) ∈ S. (16)

As generalized solution of boundary value problem (14)-(16) for each fixed control ϑ ∈ V we
mean a function ψ(x, t) = ψ(x, t;ϑ) from W 1

2 (Q) equal to zero for t = T and satisfying the
integral identity ∫ T

0

∫
Ω

(
−∂ψ
∂t

∂Φ

∂t
+∇ψ∇Φ+

3∑
i=1

ϑi
∂Φ

∂xi
ψ

)
dxdt−

−
∫ T

0

∫
∂Ω
ψ (x, t)

∫
Ω
K (x, y)Φ(y, t) dydsdt−

−
∫ T

0

∫
Ω
Φ(x, t)R(x, t)

(∫ T

0
R(x, t)u(x, t)dt− φ(x)

)
dxdt = 0

(17)

for all Φ = Φ(x, t) from W 1
2 (Q) equal to zero at t = 0.
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Since (14)-(16) is linear with respect to ψ(x, t), this problem has a unique generalized solution
in the space W 1

2 (Q) and the

∥ψ∥W 1
2 (Q) ≤ c

[
∥u∥W 1

2 (Q) + ∥φ∥L2(Ω)

]
(18)

is valid (Kozhanov & Pulkina, 2010).
Then from (8) and (18) follows

∥ψ∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q) + ∥φ∥L2(Ω)

]
. (18′)

Theorem 3. Let the conditions imposed above on the data of problem (1)-(3), (5), (6) be
satisfied. Then functional (6) is continuously Frechet differentiable on V and the differential at
the point ϑ ∈ V with increment δϑ ∈ C1(Ω̄) has the form

⟨
I ′(ϑ), δϑ

⟩
=

∫ T

0

∫
Ω

3∑
i=1

∂u

∂xi
δϑiψdxdt. (19)

Proof. Consider the increment of functional (6)

δI(ϑ) = I(ϑ+ δϑ)− I(ϑ) =

=

∫
Ω

∫ T

0
R(x, t)δudt

(∫ T

0
R(x, t)u(x, t)dt− φ(x)

)
dx+

+
1

2

∫
Ω

(∫ T

0
R(x, t)δudt

)2

dx,

(20)

where δu(x, t) = u(x, t;ϑ+ δϑ)− u(x, t;ϑ); u(x, t;ϑ+ δϑ) and u(x, t;ϑ) are solutions of problem
(1)-(3) corresponding to the controls ϑ + δϑ, ϑ ∈ V . It is obvious that the function δu(x, t) is
a generalized solution from W 1

2 (Q) for the boundary value problem

∂2δu

∂t2
−∆δu+

3∑
i=1

(ϑi + δϑi)
∂δu

∂xi
= −

3∑
i=1

∂u

∂xi
δϑi, (x, t) ∈ Q, (21)

δu(x, 0) = 0,
∂δu(x, 0)

∂t
= 0, x ∈ Ω, (22)

∂δu

∂ν

∣∣∣∣
S

=

∫
Ω
K(x, y)δu(y, t)dy, (x, t) ∈ S. (23)

The generalized solution fromW 1
2 (Q) for problem (21)-(23) is equal to zero and for t = 0 satisfies

the integral identity∫ T

0

∫
Ω

(
∂δu

∂t

∂η

∂t
−∇δu∇η −

3∑
i=1

(ϑi + δϑi)
∂δu

∂xi
η

)
dxdt+

+

∫ T

0

∫
∂Ω
η (x, t)

∫
Ω
K (x, y) δu(y, t) dydsdt =

∫ T

0

∫
Ω

3∑
i=1

∂u

∂xi
δϑiηdxdt

(24)

for all η = η(x, t) from W 1
2 (Q) equal to zero at t = T . As for the solution of problem (1)-(3) for

the solution of problem (21)-(23) the estimation

∥δu∥W 1
2 (Q) ≤ c

3∑
i=1

∥δϑi∥C(Ω̄) (25)
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is valid. If to put Φ = δu(x, t) in (17) and η = ψ(x, t;ϑ) in (24) and then sum the obtained
relation we get ∫ T

0

∫
Ω
R(x, t)δu

(∫ T

0
R(x, t)u(x, t)dt− φ(x)

)
dxdt =

−
∫ T

0

∫
Ω
ψ

3∑
i=1

∂δu

∂xi
δϑidxdt−

−
∫ T

0

∫
Ω
ψ

3∑
i=1

∂u

∂xi
δϑidxdt.

Considering this equality in (20), we have

δI(ϑ) = −
∫ T

0

∫
Ω

3∑
i=1

∂u

∂xi
δϑiψdxdt+R, (26)

where

R = −
∫ T

0

∫
Ω
ψ

3∑
i=1

∂δu

∂xi
δϑidxdt+

1

2

∫
Ω

(∫ T

0
Rδudt

)2

dx

is a reminder term.
It is obvious that the expression in the right hand side of (19) at the given ϑ ∈ V defines a

linear functional of δϑ. Additionally∣∣∣∣∣
∫ T

0

∫
Ω

3∑
i=1

∂u

∂xi
δϑiψdxdt

∣∣∣∣∣ ≤ c
3∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
L2(Q)

∥ψ∥L2(Q)

3∑
i=1

∥δϑi∥C(Ω̄) .

Considering here estimations (8), (18’) we obtain boundedness over δϑ of the functional in the
right hand side of (19).

Now we estimate the reminder term R included in (26). Using Caushy-Bunyakovski inequal-
ity, we get

|R| ≤ c

(
3∑

i=1

∥∥∥∥∂δu∂xi

∥∥∥∥
L2(Q)

∥ψ∥L2(Q)

3∑
i=1

∥δϑi∥C(Ω̄) + ∥δu∥2W 1
2 (Q)

)
.

Considering here estimate (25) we conclude that R = o
(∑3

i=1 ∥δϑi∥C(Ω̄)

)
or considering em-

bedding C1(Ω̄) ⊂ C(Ω̄) we get R = o
(∑3

i=1 ∥δϑi∥C1(Ω̄)

)
.

Then it follows from (26) that functional (6) id Frechet differentiable on V and formula (19)
is valid. Show that the mapping ϑ → I ′(ϑ) generated by equality (19) acts continuously from
V into adjoint to C1(Ω̄) space (C1(Ω̄))∗.

Let δψ(x, t) = ψ(x, t;ϑ+δϑ)−ψ(x, t;ϑ). It follows from (14)-(16) that δψ(x, t) is a generalized
solution from W 1

2 (Q) for the boundary value problem

∂2δψ

∂t2
−∆δψ −

3∑
i=1

∂

∂xi
((ϑi + δϑi)δψ) =

3∑
i=1

∂

∂xi
(ψδϑi) +

∫
∂Ω
δψ(ξ, t)K(ξ, x)ds+

+R(x, t)

∫ T

0
R(x, t)δu(x, t)dt(x, t) ∈ Q,

δψ(x, T ) = 0,
∂δψ(x, T )

∂t
= 0, x ∈ Ω,

∂δψ

∂ν

∣∣∣∣
S

= 0, (x, t) ∈ S.

223



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.3, 2021

Similarly to (18’) for the solution of this problem the estimation

∥δψ∥W 1
2 (Q) ≤ c

(
∥δu∥W 1

2 (Q) +
3∑

i=1

∥δϑi∥C1(Ω̄)

)
. (27)

is valid. Then (25), (27) and the embedding C1(Ω̄) ⊂ C(Ω̄) implies the estimation

∥δψ∥W 1
2 (Q) ≤ c

3∑
i=1

∥δϑi∥C1(Ω̄) . (28)

Using (19) and Caushy-Bunyakovski inequality we get

∥∥I ′(ϑ+ δϑ)− I ′(ϑ)
∥∥
(C′(Ω̄))

∗ ≤ c
3∑

i=1

(∥∥∥∥∂δu∂xi

∥∥∥∥
L2(Q)

∥ψ∥L2(Q)+

+

∥∥∥∥ ∂u∂xi
∥∥∥∥
L2(Q)

∥δψ∥L2(Q) +

∥∥∥∥∂δu∂xi

∥∥∥∥
L2(Q)

∥δψ∥L2(Q)

)
.

By virtue of (25) and (28) the last gives

∥∥I ′(ϑ+ δϑ)− I ′(ϑ)
∥∥
(C′(Ω̄))

∗ ≤ c

3∑
i=1

∥δϑi∥C1(Ω̄) , (29)

where the right hand side tends to zero at ∥δϑi∥C1(Ω̄) → 0, i = 1, 2, 3. It follows from this that

ϑ→ I ′(ϑ) is a continuous mapping from V into (C1(Ω̄))∗. Theorem 3 is proved.

5 Necessary conditions for optimality and the formula for the
gradient of functional (6)

Theorem 4. Let the condition of Theorem 3 be fulfilled. Then for the optimality of the control
ϑ∗(x) ∈ V in problem (1)-(3), (5), (6) it is necessary fulfilment of the inequality∫ T

0

∫
Ω

3∑
i=1

∂u∗(x, t)

∂xi
(ϑi(x)− ϑi∗(x))ψ∗(x, t)dxdt ≥ 0, (30)

for any ϑ = ϑ(x) ∈ V , where u∗(x, t) = u(x, t;ϑ∗), ψ∗(x, t) = ψ(x, t;ϑ∗) are solutions of problems
(1)-(3) and (14)-(16), correspondingly at ϑ = ϑ∗(x).

Proof. The set V defined by relation (5) is convex in (C1(Ω̄))3. Moreover, according to Theorem
3, the functional I(ϑ) is continuously Frechet differentiable on V and its differential at a point
ϑ ∈ V is determined by equality (19). Then, by virtue of Theorem 5 (Vasilyev, 1981; p.28), at
the element ϑ∗(x) ∈ V it is necessary fulfilment of the inequality⟨

I ′(ϑ), ϑ− ϑ∗
⟩
≥ 0,

for all ϑ ∈ V . From this and from (19) follows the validity of inequality (30) for all ϑ ∈ V .
Theorem 4 is proved.

Now we will show that it is possible to obtain a formula for the gradient of functional (6). We
introduce the following boundary value problem on determination of the function ψi = ψi(x;ϑ)

−∆ψi + ψi = fi(x), x ∈ Ω, i = 1, 2, 3, (31)
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∂ψi

∂ν

∣∣∣∣
∂Ω

= 0, (32)

where fi(x) =
∫ T
0

∂u
∂xi
ψdt (Tagiev, 2010).

As a solution of problem (31), (32) for a given ϑ ∈ V we mean a function ψi = ψi(x;ϑ) from
W 1

2 (Ω) satisfying the integral identity∫
Ω
(∇ψi∇η + ψiη) dx =

∫
Ω
fi(x)ηdx, (33)

for arbitrary function η = η(x) from C1
(
Ω̄
)
.

The right hand side of equation (31) belongs to L1(Ω) and boundary value problem (31),

(32) is uniquely solvable in
◦
W 1

2 (Ω) (Mikhailov, 1983).

Theorem 5. Let the conditions of Theorem 3 be fulfilled. Then the gradient of functional (6)
at an arbitrary point ϑ ∈ V is determined by the expression

I ′(ϑ) = (ψ1(x;ϑ), ψ2(x;ϑ), ψ3(x;ϑ)). (34)

Proof. Let ϑ, ϑ+δϑ ∈ V be arbitrary controls, where δϑ ∈ C1(Ω) be an increment of the control
on the point ϑ ∈ V . Taking η = δϑi in (33) we obtain

∫
Ω

(
3∑

k=1

∂ψi

∂xk

∂δϑi
∂xk

+ ψiδϑi

)
dx =

∫
Ω
fi(x)δϑidx =

=

∫ T

0

∫
Ω

∂u

∂xi
δϑiψdxdt

.

Taking into account this equality in (19), we have

⟨
I ′(ϑ), δϑ

⟩
=

∫
Ω

3∑
i=1

(
3∑

k=1

∂ψi

∂xk

∂δϑi
∂xk

+ ψiδϑi)dx.

Hence it follows that the gradient of functional (6) is determined by equality (34). Theorem 5
is proved.

The following theorem gives the necessary optimality condition in problem (1)-(3), (5), (6)
using the gradient of functional (6).

Theorem 6. Let the conditions of Theorem 3 be fulfilled. Then for the optimality of the control
ϑ∗ = ϑ∗(x) ∈ V in problem (1)-(3), (5), (6) it is necessary fulfilment of the inequality

∫
Ω

(
3∑

i=1

∇ψi∗(x)(∇ϑi(x)−∇ϑi∗(x)) +
3∑

i=1

ψi∗(x)(ϑi(x)− ϑi∗(x))

)
dx ≥ 0

for any ϑ = ϑ(x) ∈ V , where ψi∗(x) = ψi(x;ϑ∗) is a solution of problem (31), (32) at ϑ = ϑ∗(x).

The proof of Theorem 6 is quite similar to the proof of Theorem 4 using formula (34).
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