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Abstract. Aiming at the problem that intelligent algorithm can not accurately quantify the mathematical model
of each subsystem in the process of multi-variable system identification combined with historical large data,
an effective solution of data parallel optimization calculation is proposed. The method combines mechanism
modelling, experiment modelling and intelligent modelling. The model structure and initial range of parameters
are determined by step experiments of simulation model. The historical data of field operation are mined.
The model is corrected by intelligent optimization algorithm, and the transfer function model of the system is
obtained. The algorithm quantizes both the particle swarm coding and the original evolutionary search strategy.
The experimental results show that the improved algorithm outperforms PSO and QPSO in search ability. Finally,
the parameters are estimated by DQPSO algorithm based on the historical data of field operation. The design
solution is applied to the identification of transfer function of load control system in thermal power plant. The

obtained model lays a foundation for the design and optimization of the controller.
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1 Introduction

Establishing the mathematical model of the control system is one of the preconditions for system
characteristic analysis and controller design and performance optimization (Chunhwan et al.,
2016; Martins et al., 2017). Identification theory has been developed for decades, but in the
study of multi-variable identification problems, the single variable open-loop step test method
is basically used (Ke et al., 2018). Its essence is to decompose the multi-variable system into a
single variable system for model identification, that is, to disturb one of the input variables and
keep other inputs unchanged until the system runs steadily again, and then through single vari-
able (Xia et al., 2018; Prasad et al., 2018; Gabarrén et al., 2018). The system model under this
input is obtained by quantitative identification method. This method must disturb the normal
production process frequently for a long time, seriously affecting the safety of production. It is
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generally not allowed, and it is difficult to ensure that other input variables remain unchanged
(Wu et al., 2019). Literature used state space model to study the identification of multi-variable
systems (Deng & Wang, 2017). Literature proposed to construct data product matrix directly
from input and output data (Wu et al., 2019). The equivalent relationship between observable
normality of system state equation I and II and normality of input and output difference equa-
tion was established. By judging the singularity of matrix, the parameters of each subsystem
were determined. Literature put forward the F-test discrimination method of multi-variable
CARMA model order, and extended it to the F-test discrimination of sub-order and time de-
lay, forming a relatively complete multi-variable CARMA model identification method (Boussé,
2017). In recent years, subspace model identification methods have been widely used. Litera-
ture used subspace identification methods to obtain system controller model, process model and
disturbance model respectively (Raissi et al., 2017). Literature used the progressive method in
identification (Yang et al., 2017). First, the higher-order model was identified, then the model
was reduced. Finally, the model was applied to MPC (Nakata, 2017). These identification
methods are based on least squares method, and need to add disturbances frequently in the pro-
duction process, which will affect the safety of production (Downey et al., 2017). Generally, they
are not allowed. In addition to these traditional identification methods, intelligent identification
methods such as particle swarm optimization, genetic algorithm and ant colony algorithm have
also been applied in the field of identification. In the literature, the transfer function model
of some circulating fluids bed systems is studied by mining historical data of field operation
and using intelligent algorithm (Tsuchiya et al., 2017). However, most of the research objects
are single-input single-output systems, lacking in-depth study of multiple-input multiple-output
systems (Batselier et al., 2017). Based on the idea of collecting, a simplified non-linear model
of coordinated control system for ultra-super-critical once-through boiler units composed of
differential equations and algebraic equations is established, and the unknown parameters of
the model are identified according to the experimental data (Tang et al., 2017; Lai et al., 2019;
Dam et al., 2017; Ramos & Mercere, 2018; Pourbahrami et al., 2020) and (Ahmed et al., 2021).
The model is validated by field operation data, but the interaction between the various devices
is not fully considered in the process of modelling (Lai et al., 2019). Based on TS fuzzy model,
the thermal process is modelled in literature, but the problem of initial value of multi-variable
system model is not fundamentally solved (Dam et al., 2017). In view of the iteration nature
of intelligent optimization algorithm, choosing an appropriate initial estimation range plays an
important role in the optimization results and directly affects the quality of identification model
(Ramos & Mercere, 2018; Pourbahrami et al., 2020). QPSO algorithm evolved from PSO is a
newly developed optimization method. There are two main forms. One is to code the position of
particles by the probability amplitude of quantum bits and update the particles according to the
moving mode of quantum revolving gate. It not only extends the traversal ability of particles to
the solution space, but also makes the search more precise, and the performance of the algorithm
has been improved to a certain extent. The other is to quantize the particle evolutionary search
strategy. Particle evolution is realized by median optimal position, particle optimal position
and population optimal position. Velocity vectors are eliminated, and the evolution equation is
simpler in form, fewer parameters and easier to control. The double quantum particle swarm
optimization (QPSO) algorithm proposed in this paper combines the two methods to improve
both the number of qualified convergence and the precision of optimization. The problems ex-
isting in the process of multi-variable system identification with the combination of intelligent
algorithm and historical large data are analyzed through several groups of experiments. A solu-
tion of parallel optimization operation for multi-group data is proposed. The influence degree of
each input variable on output is quantified. The scheme is applied to the modelling experiment
of multi-variable coordinated control system in thermal power plant. The identification results
show that the scheme is effective.
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2 Double quantum particle swarm optimization

The double quantum particle swarm optimization (QPSO) firstly codes the particle population
using the probability magnitude of quantum bits, expands the traversal ability of the particle
to the solution space, and then quantizes the evolution process of the population, making the
evolution equation simpler in form, fewer parameters and easier to control. The calculation
steps are as follows:

2.1 Solution space transformation

In general, the continuous optimization problem can be expressed as min f(z1, 9, ..., ), Z; €
[a;, b;], m is the number of optimization variables,|a;, b;] is the definition domain of independent
variables, and f(z) is the objective function. Using the probability amplitude of quantum bits
as the current position coding of particles:

cos (i)
P = 1
t [( Sin(am) ( )
where 6;; is a random number between (0,1). ¢ =1,2,---M,j =1,2,---n , n is the spatial di-
mension (the number of optimization variables), m is the size of the population. The probability

amplitudes of quantum states | 0 > and | 1 > corresponding to each particle in the population
are as follows:
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where P;. the cosine is position of the particle and P, is the sinusoidal position of the particle.
The range of P; is [—1,1]. The transformation from unit space n to solution space of optimization
problem is as follows:

ng: b; 1+ag + a; 1—1—04 /2

wl = 1b (1+87) +a; (1+6)] /2
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where each particle corresponds to two solutions of the optimization problem. The proba-
bilistic amplitude of quantum state oeg corresponds to X gc, and the probabilistic amplitude of
quantum state 3] corresponds to ..

2.2 Quantization of Particle Renewal Process

In the space-time construction of quantum, the state of the probability amplitude of the quantum
bit corresponding to the particle can be expressed by the wave function @(g, t). According to the
superposition state and probability expression characteristics in quantum theory, the probability
density of the particle at a certain point in three-dimensional space satisfies:

+00 +oo
/ l|2dfdydz = Qdédydz = 1. (4)

—00 —00

The evolution of particles is represented by Schrodinger equation:

—

i+ o0.t) = Hp(0,1)
T h2 g2 (5)
H=—I2v2 v

where h is a Planck constant; H is Hamilton function.
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By solving the Schrodinger equation d?¢/dy? + 2m/h?[E + ~v(y)]p = 0, the probability
density of particles at some point in space can be obtained

ply) =PV
Q(y) = ge Wit (6)
L=1/=h%/my.

According to Monte Carlo method, we can get:

_1 1 o
STTYTILC ’ @

where s a random number is evenly distributed between (1,1/L) and u is a random number
between (0, 1). It can be obtained:

{ u = e 2lul/L ®)
y = :l:%ln(l/u).

Then the position equation of the probability amplitude of quantum bit is obtained:
0(t) =| 0+ vy. (9)

L value is determined by L(t — 1) = 23 |0best — 0(t)|.
Finally, the evolution equation of particles is obtained as follows

Hbest :ZZI%:ZQ1%7 ;’11@221%
0;(7) = (9150ij + P2;045) / (P15 + d25) (10)
9(t + 1) = 0 + B |9best - 9(t)| ln(l/u),

where 6; is the individual extreme value of the probability amplitude of the j-th individuality;
Opest 1s the median optimal position of the probability amplitude of all individuality; m is the
population size; ¢1, 2 are the random number between (0,1); and g is the contraction factor.
The experimental results show that the algorithm can basically achieve a better optimization
effect when linear reduction from 1.0 to 0.5.

2.3 Variation of Particles

In order to avoid premature convergence of population, mutation operator is introduced into
evolutionary algorithm. The mutation operation is realized by quantum non-gate: each quantum
is assigned a random value, if the value is less than the given mutation probability, then the
[n/2] qubits in the particle are randomly selected, and the quantum non-gate is converted into
two probability amplitudes. The optimal position and rotation vector of its memory remain

unchanged.
3 o] [t [ =L ia | a

3 System Identification of Multi variable Intelligent
Mining in Big Data Framework

3.1 The Big Data Framework for Intelligent Mining and
System Identification

We study and compare the related technologies of big data and data mining, determine the
core engine of big data processing, and implement parallel data mining algorithm based on
programming model. However, it is not enough to do this. It is inefficient for users to use
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cluster directly for data processing and data mining. It requires developers to learn and operate
a lot of knowledge related to cluster environment which is not related to actual business needs,
which reduces the efficiency of development and improves the use of the engine. This chapter
is to design and implement a large transparent data mining platform at the bottom to provide
services in the form of platform as a service. Let developers concentrate on data mining business,
without paying attention to the underlying cluster configuration, management and other tedious
work. The design goal of this system includes two aspects: first, to realize the transparency
of the underlying data processing engine cluster to the user layer; second, to realize friendly
and easy-to-use user inter-face. The significance of bottom transparency is to liberate users
from cluster operations and configurations that are not related to data mining business and to
focus on business logic. This is a very tedious and repetitive work, which seriously reduces the
development efficiency. In addition, if you want to use data processing, you have to learn the
relevant operations, according to its programming model to achieve business logic.
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Figure 1: The Big Data Framework for Intelligent Mining and System Identification

Because it is a newly emerging data processing engine, the relevant information is relatively
small, and few people are familiar with its operation mode, many data mining practitioners
do not have relevant experience. Good tools are not used by people who can use them, nor
can they play their role. Another problem is that cluster environments are usually operating
system-based, which requires developers to be familiar with environment programming and
operation, which is often unrealistic. If the data source access, environment configuration and
other operations can be encapsulated and provided in the way of interface, and the related
operations can be provided in the way of development toolkit (to achieve cross-platform remote
calls, so that users can not feel the existence of the underlying engine, using it as local data, we
can break through the limitations of the system environment, programming model and reduce
the quotation. Using of engine door planting to improve work efficiency.

As is shown in the Fig.1, the Big Data Framework is composed of perception layer, network
transmission layer, Big Data layer and application layer. In the perceptual interaction layer, the
meteorological data and sensors data are collected to achieve all-weather real-time acquisition
of scenic data. It is the foundation of the big data framework.

The network transmission layer transmits data through special equipment such as base sta-
tion and public network, and realizes the upload of perceptual data and the delivery of system
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and control management instructions.

The application layer analyzes and processes the multi-source heterogeneous data, estab-
lishes the perceptual linkage relationship between the multiple inputs and outputs. The double
quantum particle swarm optimization (QPSO) are used to update the system parameters.

3.2 The Model identification mechanism and model correction
with QPSO algorithm

The modelling method proposed in this paper is as follows: Firstly, a simulation model of ultra-
super critical units is established by mechanism modelling method. Step experiments are carried
out on the mechanism model, and the structure of the transfer function model and the initial
values of each parameter are preliminary determined. Then, the trans-fer function model of
MIMO system is corrected by excavating the massive historical data of field operation. Finally,
the transfer function model of MIMO system is obtained.

Even if the static characteristics of the unit simulated by the mechanism model are very
close to the actual system, the dynamic trend can be better approximated to the field. Because
the inevitable simplification process in the process of modelling makes the error between the
model output and the actual output in the field unavoidable, the identification results based on
the mechanism model can’t accurately describe the actual unit characteristics.
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Figure 2: The System Identification using Big Data framework

For a SISO nonlinear control system, u(k) is the control signal of the system, y and y, are
the output of the actual system and the output of the identification system respectively, where
k is a time series, e is the error between the output of the actual system y and the output
of the identification system. For an identification system based on empirical data sets, it is
usually a departure. The output of the scattered system k + 1 time can be expressed as n
previous outputs and M previous input functions (NARMAX model). The model of nonlinear
identification system based on big data is as shown in Fig. 2.

With the wide application of monitoring and management information system, each system
has a large amount of historical data of unit operation. After mining these data, it can be used
for identification. Using the selected data to correct and optimize the identification results of
the preliminary simulation model, the accurate unit model can be obtained.
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4 Results and discussion

4.1 Numerical optimization experiment and analysis of classical functions

The validity of the algorithm is validated. The D-QPSO algorithm is tested by several benchmark
functions and compared with the optimization results of QPSO and PSO. The selected test
functions are shown as follows:

[sin @577 — 05
max fi(z,y) = 0.5 — [+ 0.001% (2 + yQ)]Q (12)

The function in (12) is Shaffer’s function has infinite local maximum points, of which only
one (0,0) is the global maximum and the maximum value is 1. And the variable range is between
the —100 and 100 .

max f1(x,y) = —xsiny/y + 1T —xzcos/y+1—x

+(y+1)cosyy+1—zsin/y+1—z. (13)

The function in (13) is multi-peak function with infinite maximum points and global maxi-
mum 511.7319, and variable range is x,y € [—512,512].

maxfg(x,y)—zloloo'n( —1000)* Hc ( 1OO>+1 (14)

The function in (14) is Griewank function which is a multidimensional function, a multidi-
mensional function, and the global minimum value is 0 , and variable range is =,y € [100, 600].

The parameters of the algorithm are as follows: the particle swarm size is 50, the maximum
number of iterations is 500, the optimization repetition is 50, and the final results are averaged.
In D-QPSO, the shrinkage factor decreases linearly from 1.0 to 0.5; in QPSO (Lai et al. 2017),
the inertia weight is 0.5, the self-factor value is 2.0, the global factor value is 2.0, and the variation
probability is 0.05; in PSO (Dam et al. 2017 ), the inertia weight is 0.5, the self-factor value is
2.0, and the global factor value is 2.0. When the optimization result satisfies the condition, it is
judged to be qualified and the iteration terminates.

The experimental results are shown in Table 1. It can be seen that D-QPSO algorithm has
improved the number of qualified convergence times and the accuracy of optimization, especially
in high-dimensional optimization problems.

Table 1: Simulation results

function | algorithm best worst mean | theoretical | AD Qualification
times

D-QPSO 1 0.9903 0.9966 50

fi QPSO 1 0.9856 0.9929 1 < 0.01 | 44
PSO 0.999 0.9847 0.9899 23
D-QPSO | 511.7251 | 510.9182 | 511.5933 48

fa QPSO 511.7088 | 510.5853 | 511.3939 | 511.7319 | < 0.23 | 46
PSO 511.708 | 499.4963 | 511.292 39
D-QPSO | 21.3395 283.0107 106.663 42

f3 QPSO 134.424 377.1028 231.103 0 <150 | 9
PSO 206.929 | 1.2799*103 | 819.83 0

= |f*— f|, f* is optimal value, f is theoretical value
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4.2 Numerical optimization experiment and analysis of classical functions

The coordination system of ultra-super critical direct current units in thermal power plants is
a typical multi-variable system. The input of the system is feed water flow, total fuel flow and
turbine valve opening, and the output is turbine power, main steam pressure and intermediate
point temperature. In this section, the mathematical model between unit power and three inputs
is identified.

By analyzing the mechanism of load control system, the form of reference model set can
be determined as shown in Formula (22). The fitness function is the mean square deviation
function, as shown in equation (21).

k1(1 — as) _ds

G(s) = |ka + (T1s+1) (Tos +1)--- (Tps + 1)

(15)

In ultra-super critical once-through units, when each input is disturbed separately, the in-
fluence on unit power is as follows: when the feed water flow increases, the steam flow at the
outlet of super heater increases, and the steam turbine power rises first, but because the total
fuel quantity (total energy) of the boiler remains unchanged, the steam parameters decrease
correspondingly, and the steam turbine power falls back to the original level, and finally it is
slightly lower than the original level. When the total energy of the boiler is reduced, the steam
pressure and temperature will be reduced to a certain level, and then the power of the steam
turbine will be reduced, and finally stabilized at the level corresponding to the amount of fuel.
When the turbine regulating valve is opened, the steam intake increases and the power of the
turbine increases rapidly, but the total energy of the boiler remains unchanged. After a period
of time, the power of the turbine restores to the original level. The deviation of the boiler from
the optimum operating state will have a certain impact on the boiler efficiency and turbine
efficiency, so the unit power will be slightly lower than the previous level.

Experiments were carried out on the established mechanism model. The experimental con-
ditions were stable operation of the unit at full load, operation of five coal mills and two steam
feed pumps, 100% opening of the main valve, middle main valve and middle regulating valve,
load adjustment through high regulating valve, main control of the unit boiler, main control of
the turbine and automatic release of feed water.

Firstly, the feed water disturbance experiment is carried out, then the coal feed disturbance
experiment and the high-profile gate disturbance experiment is carried out. Because the feed
water disturbance experiment can ensure that the feed coal and the high-profile gate do not
move at all, and the feed water disturbance experiment and the high-profile gate disturbance
experiment will inevitably cause the change of steam-water system pressure, which will cause
the fluctuation of the feed water flow. For the correctness of the model, this part of the feed
water disturbance cannot be ignored. Therefore, in the identification, firstly, the feed water
disturbance identification is carried out, and then the coal feed disturbance and high-profile gate
disturbance identification are carried out based on the feed water disturbance identification. The
step increase of feed water flow is about 10%, and the response curve is shown in Fig. 3. The
increase of feed water flow will lead to the increase of steam flow at the outlet of super heater,
and the power of steam turbine will rise first. Be-cause the total fuel flow (total energy) of boiler
re-mains unchanged, the temperature of super heated steam will decrease, the quality of steam
will also decrease accordingly, and the power of steam turbine will fall back to the original level.
With the increase of the speed of feed water pump, the feed water flow and the pressure of each
node will increase, and the main steam pressure will increase. The outlet temperature (midpoint
temperature) of the steam-water separator decreases to a certain level due to the decrease of
the fuel-water ratio.

On the basis of the above experimental data, the parameters ki, ks, 11,15, T3, a,d in formula
are optimized by the double quantum particle swarm optimization algorithm to minimize the
fitness function. The parameters from ky € [—10,10] ko € [—10,10], T1, To, T3 € [0,1000],a €
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[0, 100], population size 50, mutation probability 0.05, maximum iteration number 500, shrinkage
factor linearly reduced from number 500, shrinkage factor linearly reduced from 1.0 to 0. The
identification results are shown in Fig. 4 and the corresponding parameters are shown in Table
2.
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Figure 3: Feed water flow response curve under step signal (a) Setting Value of Outlet Flow of Feed
Pump (b) Feed water flow rate (c) Actual power (d) Main steam pressure (e) Intermediate point
temperature

Table 2: Simulation results of system identification parameter

k1 k2 a T1 T2 T3 d | Err
G11 | -0.1 0 171.3 | 7423 | 348 |0 18 | 0.131
G12 | 0.0022 | O -141.3 | 1793 | 241 | O 6 | 0.002
G13 | -0.066 | O -760.9 | 914.4 | 9.7 0 12 | 0.122
G21 | 3.47 0 0 182.2 | 73.6 | 0O 0 ]0.232
G22 | 0.11 0 0 19.1 | 19.1 | 144.2 | 10 | 0.006
G23 | 0.7 0.35 | -621.5 | 345.3 | 364.1 | O 20 | 0.105
G31 | -5.14 | 4.2 281.8 | 265.3 | 86.7 |0 6 | 0.206
G32 | -0.51 -0.07 | 0 180.2 | O 0 0 | 0.007
G33 | -2.15 0.19 | 0 134.7 |1 94.19 | 23.4 | 21 | 0.059

Step wise increase of comprehensive valve position opening of steam turbine regulating valve
is about 1% (about 2% of operation of high regulating valve). Its response curve is shown in Fig.
4. Because of the opening of the regulating valve, the steam intake of the steam turbine will
increase rapidly, but the fuel flow and feed water flow will remain unchanged eventually. After a
period of time, the power of the steam turbine will return to the original level. The main steam
pressure decreases with the opening of the regulating door, and maintains at a certain level after
balance. Because of the fluctuation of the main steam pressure, the feed water will fluctuate to
a certain extent, resulting in the fluctuation of the mid-point temperature, and finally stabilize
at a slightly low level. After the test, the deviation of the boiler from the optimal operating
state will have a certain impact on the boiler efficiency and turbine efficiency, so the power
and intermediate temperature will be slightly lower than the previous level. The experimental
results show that our model can closely track the actual values and achieve good results.
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Figure 4: 4 Disturbance Identification Results of Feedwater Flow under step signal (a) Actual
power (b) Main steam pressure (c) Intermediate point temperature

4.3 Model Identification and Verification of Field Data

Taking a 1000MW ultra-super critical unit in China as the research object, the sampling period
is 5 seconds and the sampling time is 50 minutes for the data of the working condition near
800MW. Fig. 5 (a) is the unit operation data from 13:22 to 14:12 on Dec. 10, 2018, and Fig.
5 (b) is the unit operation data from 19:15 to 20:05 on Dec. 26, 2018. Among them: W is
the feed water flow, t/h; C is the total fuel flow, t/h; M is the high-profile valve position, The
original data are processed by outlier elimination, five-point cubic smoothing filter and zero-
mean method (Ke et al., 2018). The identification results are shown in Fig. 5 (a) and (b). The
optimal values of model parameters are obtained as shown in table 3. Among them, Gw, Gc
and Gm are respectively the transfer function models of feed water flow, total fuel flow and
high-profile valve position to unit load. The mean square deviation of the identification results
is 0.788.

In order to verify that the model can represent the thermal characteristics of the load control
system at this working point, the historical data of 20:20-21:10 on January 30, 2019 are selected
for model verification. The unit operation data are shown in figure5. The mean square deviation
was 0.434. From the results, the identification model can reflect the dynamic characteristics of
the system.

Table 3: Verification results of system identification parameter

parameters Gw Gce Gm
k1 0.049 2.812 6.325
ko 0.108 0.545 3.73
n 1 3 3
T1 139.581 | 78.733 | 539.026
Ty 0 264.928 | 818.267
T 0 125.519 | 849.617
a 245.465 | 3.794 | 496.231
d 5 0 9

331



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.3, 2021

N/MW

N/MW

880

(a)

860
840 |-
820
800

o i . S SRR Ry gy

?RP3:

22

1330 1338

1337 1356 1404

(b)

14:12

860
340
820 |
800 |

. Ul

e M Tom ol

Y

Y
k""w..-#t‘

R i
E

Tl

780 |

760
13:22

1330 1338 1337 1356 1404 1412

Figure 5: Result of identifying process under different time: Actual data(solid line) and model data
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Figure 6: Result of verification process under different time: Actual data (solid line) and model
data (dashed line)

In the selection principle of massive historical data, besides the premise of corresponding
working conditions, the following principles should be followed as far as possible: (1) The start-
ing and ending conditions should be as smooth as possible; (2) the data in the process of change
should have a sufficiently large signal-to-noise ratio; (3) the sampling period should be appro-
priate. By using the double quantum particle swarm optimization algorithm, the parameters
identified in the above section are doubled as the base points, and then the transfer function
model of the unit’s accurate coordinated control system is obtained by re-optimizing the param-
eters. The model obtained in the previous section can basically reflect the numerical simulation
relationship between input data and out-put data, but it does not prove that the model can fully
represent the thermal characteristics of the working point. Therefore, it needs to be validated
by data independent of identification data. The validation data is the operation data of another
time period near the identifying operating point. The input and output variables are the same
as before. The output of the transfer function model and the actual output of the unit are
shown in Fig 6. The mean square errors are 0.2591, 0.0949 and 0.3604, respectively. From the
verification results, it can be seen that the output values of the three output models are basically
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consistent with the operating values of field units. The model can be used for the design and
optimization of coordinated control system control.

5 Conclusion

Aiming at the problem that intelligent algorithm cannot accurately quantify the mathematical
model of each subsystem in the process of multi-variable system identification combined with
historical large data, an effective solution of data parallel optimization calculation is proposed.
The method combines mechanism modelling, experiment modelling and intelligent modelling.
The model structure and initial range of parameters are determined by step experiments of
simulation model. The historical data of field operation are mined.

In this paper, mechanism modelling, experimental modelling and intelligent modelling are
combined, and a modelling method suitable for multi variable systems is proposed. The de-
velopment and application of the mechanism model avoids the step response of the production
site, determines the structure and initial parameters of the MIMO model, corrects the trans-
fer function model obtained from the preliminary test by using the double quantum particle
swarm optimization algorithm and selected field operation history data, and finally obtains the
accurate transfer function model. In this paper, the idea of modelling is successfully applied to
the coordination system modelling of ultra-super critical units, and a multi-input multi-output
transfer function model for the optimization of the controller of the coordinated control system
is obtained. The transfer function model of any working point of other thermal systems can be
established by using this method, which is also the next step of the author’s work.
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