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1 Introduction

Optimal control problems for the linear and nonlinear stationary quasi-optics equations or
linear and nonlinear nonstationary Schrödinger equations often arise in quantum mechanics,
nuclear physics, nonlinear optics, and in other areas of modern physics and technology, and
the study of these problems is of both theoretical and practical interest (Küçük et al., 2019;
Lions & Magenes, 1972; Tikhonov & Arsenin, 1979). One of these actual problems is the prob-
lem of the motion of charged particles the potential of which is unknown and must be determined.
It is known that if a charged particle in the constant uniform magnetic field moves and the di-
rection of the magnetic field is chosen along the axis z, then the motion of the particle occurs
in the plane (x, y) ∈ E2 and this motion is usually described by the two-dimensional linear
Schrödinger equation with a special gradient term (see Küçük et al. (2019), p. 82). Similar op-
timal control problems for the linear nonstationary Schrödinger equation with a special gradient
term were previously studied in papers Goebel (1979); Yagub et al. (2017). Note that optimal
control problems for the linear and nonlinear nonstationary Schrödinger equations without a
special gradient term were previously studied in detail in, for example, papers Butkovsky &
Samoilenko (1984); Vorontsov & Shmalgauzen (1985); Zhuravlev (2001); Yagubov et al. (2012);
Iskenderov & Yagubov (1988); Zhang (2018); Pashaev et al. (2020) Iskenderov et al. (2017,
2016); Ibragimov (2012); Vasiliev (1981); Yosida (1967). Optimal control problems for the non-
linear nonstationary Schrödinger equation with a special gradient term and with a real-valued
potential, when the potential plays the role of control and is sought in the class of measurable
bounded functions and the coefficient in the nonlinear part of the equation is a purely imag-
inary number, investigated in papers (De la Vega & Rial, 2018; Aronna et al., 2019). At the
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same time it should be noted that the optimal control problem for the three-dimensional non-
linear non-stationary Schrödinger equation with a special gradient term and with a real-valued
potential, when the potential depends on both spatial and time variables plays the role of control
and is sought in the class of measurable bounded functions and the coefficient in the nonlinear
part of the equation is a complex number, was first investigated in Ibragimov (2010c). How-
ever, the problems of the optimal control problem for the stationary quasi-optics equation or
the nonstationary Schrödinger equation with a special gradient term, when the quality criteria
is an integral over the domain boundary, have been relatively less studied. A similar problem
of optimal control only for the one-dimensional nonlinear Schrödinger equation with a special
gradient term and with a complex potential, when the quality criteria is an integral over the
boundary of the domain, was first studied in Ibragimov (2010b).

The optimal control problem for the multidimensional linear Schrödinger equation with a
special gradient term and with a complex potential depending only on spatial variables, when
the quality criteria is an integral over the boundary of the domain and the controls are real
and imaginary parts of the complex potential and are selected from the class of measurable
bounded functions depending on spatial variables was investigated in Yagub et al. (2015). The
present work is devoted to the study of the optimal control problem for a multidimensional linear
stationary quasi-optics equation with a special gradient term, when the quality criteria is final
and integral over the boundary of the domain. As the control are considered the refraction and
absorption coefficients of the medium that are taken from the class of the quadratic-summable
functions having quadratic-summable derivatives depending on the distance variable z. It should
be noted that identification problems for linear and nonlinear stationary equations of quasi-optics
without a special gradient term were previously studied in detail in Yagubov & Musaeva (1997);
Baudouin et al. (2005); Aksoy et al. (2017).

2 Problem statement

Let D be a bounded convex domain from the n-dimensional Euclidean space Rn, with smooth
enough boundary Γ, x = (x1, x2, ..., xn) is an arbitrary point of the domain D, L > 0 is a
given number, 0 ≤ z ≤ L, Ωz = D × (0, z) ,Ω = ΩL,S = Γ × (0, L) is a lateral surface of Ω;
Ck ([0, L] , B) is a Banach space of the k- times continuously differentiable on the interval [0, L]
functions with values from the Banach space B; Lp (D) is a Lebesque space of the functions,
summable over the module with order p ≥ 1; L2 (0, L;B) is a Banach space of the functions
defined and quadratic summable over the order on the interval [0, L] with values from the Banach
space B; L∞ (0, L;B) is a Banach space of the functions measurable and bounded on (0, L) with

values from the Banach space B; the Sobolev spacesW k
p (D) ,W k,m

p (Ω) ,p ≥ 1, k ≥ 0, m ≥ 0 are
defined as, for example in Yagub & Boztepe (2018); Yagub et al. (2019); Ibragimov (2010a).

Consider the problem of minimizing the functional

Jα(v) = β ∥ψ − y∥2L2(S)
+ β0 ∥ψ (., L)− y0∥2L2(D) + α ∥v − ω∥2H (1)

on the set

V =
{
v = v(z) = (v0 (z) , v1 (z)) : vm ∈W 1

2 (0, L) , ∥vm∥W 1
2 (0,L)

≤ bm,m = 0, 1
}

under the conditions

i
∂ψ

∂z
+ a0∆ψ + ia1(x)∇ψ − a(x)ψ + v0(z)ψ + iv1 (z)ψ = f(x, z), (x, z) ∈ Ω, (2)

ψ(x, 0) = φ(x), x ∈ D,
∂ψ

∂ν

∣∣∣∣
S

= 0, (3)
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where i =
√
−1; L > 0, bm > 0, m = 0, 1,a0 > 0, α ≥ 0, β ≥ 0, β0 ≥ 0 are the given numbers

such that β+β0 ̸= 0; ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ...+ ∂2

∂x2
n
is the Laplace operator; ∇ =

(
∂

∂x1
, ∂
∂x2

, ..., ∂
∂xn

)
is

the nubla operator; ν is the outward normal to the boundary Γ; a (x) is a bounded measurable
function satisfying the condition

0 < µ0 ≤ a(x) ≤ µ1,
o
∀x ∈ D, µ0, µ1 = const > 0, (4)

a1 (x) = (a11 (x) , a12 (x) , ..., a1n (x)) is a given vector-function the components of which satisfy
the conditions

|a1j(x)| ≤ µ2,

∣∣∣∣∂a1j(x)∂xk

∣∣∣∣ ≤ µ3, j, k = 1, n,
0
∀x ∈ D

a1 (x)|Γ= 0, µ2, µ3 = const > 0; (5)

φ (x) , f (x, z) , y (ξ, z) , y0 (x) are complex-values functions satisfying

φ ∈W 2
2 (D),

∂φ

∂ν

∣∣∣∣
Γ

= 0 , f ∈W 0,1
2 (Ω) ; (6)

y ∈ L2 (S) , y0 ∈ L2 (D) ; (7)

ω ∈ H is a given element, where H ≡ W 1
2 (0, L) ×W 1

2 (0, L) ; the symbol
0
∀ means “for almost

all”.

The problem of determining the function ψ = ψ (x, z) ≡ ψ (x, z; v) from conditions (2),
(3) for each v ∈ V is the second initial-boundary value problem for a multidimensional linear
stationary quasi-optics equation with a special gradient term.

Definition 1. For each v ∈ V as the solution of the second initial-boundary value problem (2),
(3) we mean the function ψ = ψ (x, z) ≡ ψ (x, z; v) from the space B1 ≡ C0

(
[0, L] ,W 2

2 (D)
)∩∩

C1 ([0, L] , L2 (D))that satisfies equation (2) for almost all x ∈ Dand anyz ∈ [0, L], and the
initial and boundary conditions (3) for almost all x ∈ D and for almost all (x, z) ∈ S, corre-
spondingly.

Initial-boundary value problems for linear and nonlinear non-stationary Schrö- dinger equa-
tions with a special gradient term were previously studied in papers Iskenderov & Yagubov
(2007); Iskenderov et al. (2012); Barbu et al. (2018); Yagub et al. (2017); Ibragimov (2010c);
Yagub et al. (2016); Yagubov et al. (2017); Iskenderov et al. (2018). Using the methodology of
those papers, the following statement was proved:

Theorem 1. Let the functionsa (x), a1 (x) , φ (x), f (x, z) satisfy conditions (4)-(6). Then
initial boundary value problem (2), (3) for each v ∈ V has a unique solution from the space B1

and this solution satisfies the estimate:

∥ψ (·, z)∥2W 2
2 (D) +

∥∥∥∥∂ψ (·, z)
∂z

∥∥∥∥2
L2(D)

≤ c0 (∥φ∥2
W 2

2 (D) + ∥f∥2
W 0,1

2 (Ω)

)
, ∀z ∈ [0, L] , (8)

where A0 > 0 is a constant not depending on z .

It follows from this theorem and from the embedding of the space B1 into the spaces
L2 (S) , L2 (D) that functional (1) makes sense in the considered class of solutions B1.
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3 Existence and uniqueness of a solution to the optimal control
problem

In this section, we study the existence and uniqueness of the solution to the optimal control
problem (1) - (3). Therefore, we first establish a result on the existence of a unique solution to
the problem. For this purpose, we give a well-known theorem on the existence and uniqueness
of a solution to nonconvex optimization problem.

Theorem 2. (Goebel, 1979). Let X̃ be a uniformly convex space, U is a closed bounded set from
X̃, the functional I (v) be lower semicontinuous and lower bounded on U , α > 0, β ≥ 1be a given
number. There exists dense subset G of the space X̃ such that for any ω ∈ G the functional

Jα (v) = I (v) + α ∥v − ω∥β
X̃

reaches its lowest value at U . If β > 1 then the lowest value of the functional Jα (v) on U is
reached on the unique element.

Using this theorem, we prove the following statement:

Theorem 3. Let the functions a (x), a1 (x), φ (x) , f (x, z) , y (ξ, z) , y0 (x) satisfy conditions (4)-
(7). Let, in addition ω ∈ H. Then there exists a dense subset G of the space H such that, for
any ω ∈ G at α > 0 optimal control problem (1)-(3) has a unique solution.

Proof. First, we prove the continuity of the functional J0 (v) on the set V .

J0 (v) = β ∥ψ − y∥2L2(S)
+ β0 ∥ψ (., L)− y0∥2L2(D) . (9)

Let the increment δv ∈ H ≡W 1
2 (0, L)×W 1

2 (0, L) of any control v ∈ V be such that v+ δv ∈ V
and δψ = δψ (x, z) ≡ ψ (x, z; v + δv)−ψ (x, z; v), where ψ (x, z; v) is a solution to initial boundary
value problem (2), (3) at v ∈ V . From conditions (2), (3) follows that the function δψ = δψ (x, z)
is a solution to the following initial-boundary value problem

i
∂δψ

∂z
+ a0∆δψ + ia1(x)∇δψ − a(x)δψ + (v0 (z) + δv0 (z)) δψ + i (v1 (z) + δv1 (z)) δψ =

= −δv0 (z)ψ (x, z)− iδv1 (z)ψ (x, z) , (x, z) ∈ Ω, (10)

δψ (x, 0) = 0, x ∈ D,
∂δψ

∂ν

∣∣∣∣
S

= 0, (11)

where ψδ = ψδ (x, z) ≡ ψ (x, z; v + δv) is a solution to initial-boundary value problem (2), (3)
atv + δv ∈ V , δv ∈ B.

Let us establish an estimate for the solution of the initial-boundary value problem (10), (11).
For this purpose, we multiply both sides of equation (10) by the function δψ̄ (x, z) and integrate
the obtained equality over the domain Ωz. Then using the formula for integration by parts and
the boundary condition from (11), we have∫

Ωz

(
i
∂δψ

∂z
δψ̄ − a0 |∇δψ|2 + ia1 (x)∇δψδψ̄−

−a (x) |δψ|2 + (v0 (τ) + δv0 (τ)) |δψ|2
)
dxdτ+

+i

∫
Ωz

(v1 (τ) + δv1 (τ)) |δψ|2 dxdτ =
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= −
∫
Ωz

δv0 (τ)ψδψ̄dxdτ − i

∫
Ωz

δv1 (τ)ψδψ̄dxdτ, ∀z ∈ [0, L] .

Subtracting its complex conjugation from this equality and applying the Cauchy-Bunyakovsky
inequality, using the initial and boundary conditions from (11), as well as the condition on the
function a1 (x) we obtain the following inequality

∥δψ (., z)∥2L2(D) ≤ (nµ2 + 2)

∫ z

0
∥δψ (., τ)∥2L2(D) dτ+

+

∫
Ωz

|δv0 (τ)|2 |ψ (x, τ)|2 dxdτ +
∫
Ωz

|δv1 (τ)|2 |ψ (x, τ)|2 dxdτ, ∀z ∈ [0, L] .

Hence, by virtue of estimate (8) and applying Gronwall’s lemma (see Ladyzhenskaya et al.
(1967), pp. 30-31), we obtain the estimate

∥δψ (., z)∥2L2(D) ≤ c1

(
∥δv0∥2L2(0,L)

+ ∥δv1∥2L2(0,L)

)
, ∀z ∈ [0, L] , (12)

where c1 > 0 is a constant not depending on δv.
Now we establish an estimate for the first partial derivatives with respect to the variables

xj , j = 1, n of the solution to initial-boundary value problem (10), (11). For this purpose, we
multiply both sides of (10) by the function Lδψ̄ (x, z)and integrate the resulting equality over
the domain Ωz. Then we have∫

Ωz

(
i
∂δψ

∂z
Lδψ̄ − a0 |Lδψ|2 + ia1 (x)∇δψLδψ̄ + (v0 (τ) + δv0 (τ)) δψLδψ̄

)
dxdτ+

+i

∫
Ωz

(v1 (τ) + δv1 (τ)) δψLδψ̄dxdτ =

= −
∫
Ωz

δv0 (τ)ψLδψ̄dxdτ − i

∫
Ωz

δv1 (τ)ψLδψ̄dxdτ, ∀z ∈ [0, L] ,

where Lδψ̄ (x, z) = −a0∆ψ (x, z) + a (x) δψ̄ (x, z).
Using the formula for integration by parts and the boundary condition (11), this equality

can be written in the form:∫
Ωz

(
ia0

∂∇δψ
∂z

∇δψ̄ + ia (x)
∂δψ

∂z
δψ̄ − a0 |Lδψ|2

)
dxdτ+

+

∫
Ωz

(
−ia0a1 (x)∇δψ∆δψ̄ + ia1 (x)∇δψa (x) δψ̄

)
dxdτ+

+a0

∫
Ωz

((v0 (τ) + δv0 (τ))∇δψ)∇δψ̄dxdτ+

+ia0

∫
Ωz

((v1 (τ) + δv1 (τ))∇δψ)∇δψ̄dxdτ+

+

∫
Ωz

((v0 (τ) + δv0 (τ)) δψ) a (x) δψ̄dxdτ+

+i

∫
Ωz

((v1 (τ) + δv1 (τ)) δψ) a (x) δψ̄dxdτ =

= −a0
∫
Ωz

(δv0 (τ)∇ψ)∇δψ̄dxdτ − ia0

∫
Ωz

(δv1 (τ)∇ψ)∇δψ̄dxdτ−

−
∫
Ωz

(δv0 (τ)ψ) a (x) δψ̄dxdτ − i

∫
Ωz

(δv1 (τ)ψ) a (x) δψ̄dxdτ, ∀z ∈ [0, L] .
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Subtracting its complex conjugation from this equality, it is easy to obtain the validity of the
equality ∫

Ωz

(
a0

∂

∂z
∥∇δψ∥2Rn − a0

(
a1 (x)∇δψ∆δψ̄ + a1 (x)∇δψ̄∆δψ

)
+

+a (x)
∂

∂z
|δψ|2 ) dxdτ+

+2a0

∫
Ωz

(v1 (τ) + δv1 (τ)) ∥∇δψ∥2Rn dxdτ+

+2

∫
Ωz

(
a (x) (v1 (τ) + δv1 (τ)) |δψ|2

)
dxdτ+

2
∫
Ωz
Re
(
a1 (x)∇δψa (x) δψ̄

)
dxdτ =

= −2a0

∫
Ωz

Im
(
∇ (δv0 (τ)ψ)∇δψ̄

)
dxdτ−

2a0
∫
Ωz
Re
(
∇ (δv1 (τ)ψ)∇δψ̄

)
dxdτ−

−2

∫
Ωz

a (x) δv0 (τ) Im
(
ψδψ̄

)
dxdτ−

2
∫
Ωz
a (x) δv1 (τ)Re

(
ψδψ̄

)
dxdτ, ∀z ∈ [0, L] .

(13)

Now we transform the second term on the left-hand side of this equality as follows:

−a0
∫
Ωz

((
a1 (x)∇δψ∆δψ̄ + a1 (x)∇δψ̄∆δψ

))
dxdτ =

= a0

∫
Ωz

n∑
j=1

n∑
k=1

2
∂a1k (x)

∂xj
Re

(
∂δψ

∂xk

∂δψ̄

∂xj

)
dxdτ+

+a0

∫
Ωz

n∑
j=1

n∑
k=1

∂

∂xk

(
a1k (x)

∣∣∣∣∂δψ∂xj
∣∣∣∣2
)
dxdτ−

−a0
∫
Ωz

n∑
j=1

n∑
k=1

∂a1k (x)

∂xk

∣∣∣∣∂δψ∂xj
∣∣∣∣2 dxdτ, ∀z ∈ [0, L] .

Taking into account the boundary conditions for the vector function a1 (x) and δψ (x, z), it is
easy to see that the second term on the right-hand side is equal to zero. Therefore, the last
equality may be written as follows

−a0
∫
Ωz

((
a1 (x)∇δψ∆δψ̄ + a1 (x)∇δψ̄∆δψ

))
dxdτ =

= a0

∫
Ωz

n∑
j=1

n∑
k=1

2
∂a1k (x)

∂xj
Re

(
∂δψ

∂xk

∂δψ̄

∂xj

)
dxdτ−

−a0
∫
Ωz

n∑
j=1

n∑
k=1

∂a1k (x)

∂xk

∣∣∣∣∂δψ∂xj
∣∣∣∣2 dxdτ, ∀z ∈ [0, L] .
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Taking into account this equality on the left-hand side of equality (13) we obtain:

a0

∫
Ωz

∂

∂z
∥∇δψ (., τ)∥2Rn dτ +

∫
Ωz

a (x)
∂

∂z
∥δψ (., τ)∥2Rn dτ =

= −a0
∫
Ωz

n∑
j=1

n∑
k=1

2
∂a1k (x)

∂xj
Re

(
∂δψ

∂xk

∂δψ̄

∂xj

)
dxdτ+

+a0

∫
Ωz

n∑
j=1

n∑
k=1

∂a1k (x)

∂xk

∣∣∣∣∂δψ∂xj
∣∣∣∣2 dxdτ−

−2a0

∫
Ωz

(v1 (τ) + δv1 (τ)) ∥∇δψ∥2Rn dxdτ−

−2

∫
Ωz

(
a (x) (v1 (τ) + δv1 (τ)) |δψ|2

)
dxdτ−

−2

∫
Ωz

Re
(
a1 (x)∇δψa (x) δψ̄

)
dxdτ−

−2a0

∫
Ωz

Im
(
(δv0 (τ)∇ψ)∇δψ̄

)
dxdτ−

−2a0

∫
Ωz

Re
(
(δv1 (τ)∇ψ)∇δψ̄

)
dxdτ−

−2

∫
Ωz

a (x) δv0 (τ) Im
(
ψδψ̄

)
dxdτ−

−2

∫
Ωz

a (x) δv1 (τ)Re
(
ψδψ̄

)
dxdτ, ∀z ∈ [0, L] .

From this equality, under the accepted assumptions on the coefficients of the equation, using

the initial conditions δψ (x, 0) = 0,∇δψ (x, 0) = 0,
0
∀x ∈ D, as well as the Cauchy-Bunyakovsky

inequality, it is easy to establish the validity of the following inequality

a0 ∥∇δψ (., z)∥2L2(D) + µ0 ∥δψ (., z)∥2L2(D) ≤

≤ 3a0µ3n

∫ z

0
∥∇δψ (., τ)∥2L2(D) dτ+

+2a0 ∥v1 + δv1∥L∞(0,L)

∫ z

0
∥∇δψ (., τ)∥2L2(D) dτ+

+2µ1 ∥v1 + δv1∥L∞(0,L)

∫ z

0
∥δψ (., τ)∥2L2(D) dτ+

+µ1µ2
√
n

∫ z

0
∥∇δψ (., τ)∥2L2(D) dτ + µ1µ2

√
n

∫ z

0
∥δψ (., τ)∥2L2(D) dτ+

+a0

(
∥δv0∥2L∞(0,L) + ∥δv1∥2L∞(0,L)

)∫
Ωz

∥∇ψ (x, τ)∥2Rn dxdτ+

+2a0

∫ z

0
∥∇δψ (., τ)∥2L2(D) dτ+

+µ1

(
∥δv0∥2L∞(0,L) + ∥δv1∥2L∞(0,L)

)∫
Ωz

|ψ (x, τ)|2 dxdτ+

+2µ1

∫ z

0
∥δψ (., τ)∥2L2(D) dτ, ∀z ∈ [0, L] .

(14)
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Due to the fact that δv ∈ H and v + δv ∈ V we can establish the validity of the inequalities

∥δvm∥L∞(0,L) ≤ c2 ∥δvm∥W 1
2 (0,l)

≤ c3,m = 0, 1, (15)

∥vm + δvm∥L∞(0,L) ≤ c4 ∥vm + δvm∥W 1
2 (0,l)

≤ c2bm,m = 0, 1. (16)

By virtue of these inequalities and estimates (8), (12), from inequality (14) we can obtain the
following inequality

a0 ∥∇δψ (., z)∥2L2(D) ≤ A5

(
∥δv0∥2W 1

2 (0,L)
+ ∥δv1∥2W 1

2 (0,L)

)
+

+c6

∫ z

0
∥∇δψ (., τ)∥2L2(D) dτ, ∀z ∈ [0, L] .

If we divide both sides of this inequality by a0 then apply Gronwall’s lemma, then we obtain
the validity of the estimate

∥∇δψ (., z)∥2L2(D) ≤ c7

(
∥δv0∥2W 1

2 (0,L)
+ ∥δv1∥2W 1

2 (0,L)

)
, ∀z ∈ [0, L] , (17)

where A7 > 0 is a constant not depending on δv. Summing this with estimate (12) and taking
into account that δv ∈ H we obtain

∥δψ (., z)∥2W 1
2 (D) ≤ c8 ∥δv∥2H ,∀z ∈ [0, L] , (18)

from which follows the estimate

∥δψ∥2
W 1,0

2 (Ω)
≤ c9 ∥δv∥2H , (19)

where A9 > 0 is a constant not depending on δv. From this estimate, by virtue of the trace
theorem (see Ibragimov (2011), p.170), we can establish

∥δψ∥2L2(S)
≤ c10 ∥δv∥2H , (20)

where A10 > 0 is a constant not depending on δv.
Now let’s consider the increment of the functional J0 (v)on any element v ∈ V . By formula

(9) we have

δJ0 (v) = J0 (v + δv)− J0 (v) =

= 2β

∫
S
Re
[
(ψ (ξ, z)− y (ξ, z)) δψ̄ (ξ, z)

]
dξdz + β ∥δψ∥2L2(S)

+

+2β0
∫
D Re

[
(ψ (x, L)− y0 (x)) δψ̄ (x, L)

]
dx+ β0 ∥δψ (., L)∥2L2(D) .

(21)

From this formula, applying the Cauchy-Bunyakovsky inequality and the trace theorem, using
estimates (8), (19), (20) and conditions (7), we obtain the inequality

|δJ0 (v)| ≤ c11

(
∥δv∥H + ∥δv∥2H

)
, ∀v ∈ V,

where A11 > 0 is a constant not depending on δv.
This inequality implies the continuity of the functional J0 (v) on the set V . The set V is

a closed, bounded and convex set in the uniform convex space H (Mikhailov, 1983). Then, by
virtue of Theorem 2, there exists a dense subset G of the space H such that for any ω ∈ G and
α > 0 optimal control problem (1)-(3) has a unique solution. Theorem 3 is proved.

Now let us show that for α ≥ 0 and for any ω ∈ H optimal control problem (1) - (3) has at
least one solution.
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Theorem 4. Let the conditions of Theorem 1 be satisfied. Then, for α ≥ 0 and for any ω ∈ H
optimal control problem (1) - (3) has at least one solution.

Proof. Take any minimizing sequence
{
vk
}
⊂ V :

lim
k→∞

Jα

(
vk
)
= Jα∗ = inf

v∈V
Jα (v) .

Let ψk = ψk (x, z) ≡ ψ
(
x, z; vk

)
, k = 1, 2, .... By virtue of Theorem 1, for each vk ∈ V initial-

boundary value problem (2), (3) has a unique solution ψk (x, z) from the space B1, and this
solution satisfies the estimate

∥ψk (·, z)∥2W 2
2 (D) +

∥∥∥∥∂ψk (·, z)
∂t

∥∥∥∥2
L2(D)

≤ c0 (∥φ∥2
W 2

2 (D) + ∥f∥2
W 0,1

2 (Ω)

)
,

∀z ∈ [0, L] , k = 1, 2, ...,

(22)

where the right-hand side of the estimate does not depend on k.

Since V is a bounded set of the Hilbert space H ≡W 1
2 (0, L)×W 1

2 (0, L), from the sequence{
vk
}
⊂ V one can choose such a subsequence

{
vkp
}
, (which for the sake of simplicity we again

denote by
{
vk
}
), that satisfies

vkm → vm, m = 0, 1 weekly in L2 (0, L) , (23)

dvkm
dz

→ dvm
dz

, m = 0, 1 weekly in L2 (0, L) (24)

at k → ∞. Moreover, V is a closed convex set from H. Therefore, V is a weakly closed set i.e.
v ∈ V . In addition, due to the compact embedding of space H ≡ W 1

2 (0, L) ×W 1
2 (0, L) into

space C [0, L]× C [0, L] we can write the following relation:

lim
k→∞

vkm (z) = vm (z) ,m = 0, 1 (25)

uniformly relatively to z ∈ [0, L] .

It follows from estimate (22) that the sequence {ψk (x, z)} is uniformly bounded in the norm
of the space B1. Then from this sequence one can choose a subsequence

{
ψkp (x, z)

}
(which for

the sake of simplicity we again denote by {ψk (x, z)}), such that

ψk (·, z) → ψ (·, z) weekly in W 2
2 (D) ; (26)

∂ψk (·, z)
∂z

→ ∂ψ (·, z)
∂z

weekly in L2 (D) , (27)

for each z ∈ [0, L] at k → ∞.

It is clear that each element {ψk (x, z)} from B1 satisfies the identity∫
D

(
i
∂ψk (x, z)

∂z
+ a0∆ψk (x, z) + ia1 (x)∇ψk (x, z)− a (x)ψk (x, z)+

+vk0 (z)ψk (x, z) + ivk1 (z)ψk (x, z)− f (x, z)
)
η̄ (x) dx = 0,∀z ∈ [0, L] , k = 1, 2, ... (28)

for any function η = η (x) from L2 (D), initial condition

ψk (x, 0) = φ (x) ,
0
∀x ∈ D, k = 1, 2, ... (29)
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and boundary condition
∂ψk

∂ν

∣∣∣∣
S

= 0, k = 1, 2, .... (30)

Due to the compactness of the embedding of the space B1 into C0 ([0, L] , L2 (D)) we have

∥ψk (·, z)− ψ (·, z)∥L2(D) → 0, (31)

uniformly relatively to z ∈ [0, L] at k → ∞. Using this and limit relations (25), we can establish
the validity of the relations∫

D
vkm (z)ψk (x, z) η̄ (x) dx =

∫
D
vm (z)ψ (x, z) η̄ (x) dx,m = 0, 1, (32)

for each z ∈ [0, L] and for any η ∈ L2 (D) at k → ∞. Using limit relations (26), (27), and (32),
passing to the limit in the integral identity (25), we obtain the identity:∫

D

(
i
∂ψ (x, z)

∂z
+ a0∆ψ (x, z) + ia1 (x)∇ψ (x, z)− a (x)ψ (x, z)+

+v0 (z)ψ (x, z) + iv1 (z)ψ (x, z)− f (x, z)) η̄ (x) dx = 0 (33)

for each z ∈ [0, L] and for any function η = η (x) from L2 (D). Hence it follows that the limit
function ψ (x, z) for each z ∈ [0, L] and for almost all x ∈ D satisfies (2). Satisfaction of the
initial condition follows from the limit relation (31) atz = 0 the initial condition (29) and from
the inequality:

∥ψ (·, 0)− φ∥L2(D) ≤ ∥ψ (·, 0)− ψk (·, 0)∥L2(D) + ∥ψk (·, 0)− φ∥L2(D) .

Finally, let us prove that the limit function ψ (x, z) satisfies the second boundary condition
from (3). Indeed, by virtue of the theorem on traces (see Yagub et al. (2019), p.98; Ibragimov
(2010a)) for {ψk (x, z)} from the space B1 the following relation is valid

∂ψk

∂ν

∣∣∣∣
S

∈ L2 (S) , k = 1, 2, .... (34)

Therefore, we can state that the following limit relation is valid

∂ψk

∂ν

∣∣∣∣
S

→ ∂ψ

∂ν

∣∣∣∣
S

weekly in L2 (S) (35)

at k → ∞. Then, using this and boundary condition (30), from the equality∫
S

∂ψ (ξ, z)

∂ν
g (ξ, z) dξdz =

∫
S

(
∂ψ (ξ, z)

∂ν
− ∂ψk (ξ, z)

∂v

)
g (ξ, z) dξdz+

+

∫
S

∂ψk (ξ, z)

∂ν
g (ξ, z) dξdz, ∀g ∈ L2 (S)

with passing to limit, we obtain the validity of the boundary condition

∂ψ (ξ, z)

∂ν
= 0,

0
∀ (ξ, z) ∈ S.

Thus, we have proved that the limit function ψ (x, z) is a solution to the initial-boundary value
problem (2), (3) corresponding to the limit function v ∈ V i.e. ψ = ψ (x, z) ≡ ψ (x, z; v). In
addition, this function satisfies estimate (8), which immediately follows from estimate (22) with
passing to limit along weakly converging subsequences {ψk (x, z)}. By virtue of Theorem 1, such
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a solution uniquely belongs to the space B1. Due to the compactness of the embedding of the
space B1 into the space L2 (S), we obtain the validity of the limit relation

ψk → ψ strongly in L2 (S) at k → ∞. (36)

Using this relation and (31), as well as the weak lower semicontinuity of the norms of the
spacesL2 (S),L2 (D), H for ∀α ≥ 0 and ∀ω ∈ H we obtain

Jα∗ ≤ Jα (v) ≤ lim
−−−−
k→∞

Jα (vk) = inf
v∈V

Jα (v) = Jα∗.

Hence it follows that v ∈ V is the solution to optimal control problem (1)-(3) for ∀α ≥ 0 and
∀ω ∈ H. Theorem 4 is proved.

4 Conclusion

Proved in this paper solvability theorems form the theoretical basis for the numerical solu-
tion of this optimal control problem for the Schrödinger equation. Along with these results,
it is also possible to apply variational methods to solve inverse problems of determining the
refractive index and absorption in the stationary uranium of quasi-optics, which describes the
motion of charged particles or light beams in an inhomogeneous medium (Küçük et al., 2019;
Lions & Magenes, 1972). It is known that the above considered optimal control problem for
α = 0 is from the class of ill-posed problems, in other words, this problem is unstable (see the
example in Iskenderov et al. (2016)). Along with these, it should be noted that when α = 0
i.e. when the influence of the term of the functional with a coefficient α is canceled, the solu-
tion of the problem under consideration is not only non-unique and, as shown above, unstable.
Therefore, the results obtained above regarding the solvability of the considered optimal control
problem make it possible to develop a stable algorithm for solving this problem (Ladyzhenskaya,
1973).
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