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1 Introduction

For many years, suspension bridges have an exclusive place among other structural systems
due to their outstanding architectural appearance. Due to the dominating tension stresses,
suspension bridges assure covering the longest spans in the world. In suspension bridges, large
main cables (normally two) hang between the towers and are anchored at each end to the ground.
The main cables, which are free to move on bearings in the towers, bear the load of the bridge
deck. Before the deck is installed, the cables are under tension from their own weight. Along
the main cables smaller cables or rods connect to the bridge deck, which is lifted in sections. As
this is done, the tension in the cables increases, as it does with the live load of traffic crossing
the bridge. The tension on the main cables is transferred to the ground at the anchorages and
by downwards compression on the towers.

There has always been great interest in modelling suspension bridges because of their effi-
ciency and remarkable architectural appearance (Lazer & McKenna, 1987; McKenna & Walter,
1990; Ahmed & Harbi,1998; Aliev & Farhadova, 2021; 2022 ). The systems described by PDE’s
with time delays have been an active field of research over the last years (Dafermos, 1970a;
1970b; Xu et al., 2006; Nicaise et al., 2009; Nicaise & Pignotti, 2006; 2011; Rahmoune, 2021;
Ferreira et al., 2022; Chellaouna & Boukhatem, 2020) and references therein. Since time delay
may destroy stability (Xu et al., 2006; Nicaise et al., 2009; Nicaise & Pignotti, 2006; 2011;
Rahmoune, 2021) even if it is very small, the stabilization problem of systems with time delays
has been a popular topic in the mathematical control theory and engineering.

In this paper, we consider the mixed problem with a time-varying delay in linear aerodynamic
resistance force in the bridge problem and prove the theorem on the existence and uniqueness
of the solution of considered problem.

*How to cite (APA): Aliev, A.B., Farhadova, Y.M. (2022). Existence of a solution to the nonlinear bridge
problem with a time-varying delay. Advanced Mathematical Models & Applications, 7 (3), 351-360.
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2 Statement of the problem. Existence and uniqueness
of the solution

We consider the following mathematical model for the oscillations of the bridge with a time-
varying delay 

utt (x, t) + uxxxx (x, t) + [u− v]+ + λ1ut(x, t)+
+λ2ut(x, t− τ1(t)) = h1(t, x),
vtt(x, t)− vxx(x, t)− [u− v]+ + µ1υt(x, t)+

+µ2υt(x, t− τ2(t)) = h2(t, x),

(1)

where 0 ≤ x ≤ l , t > 0, u(x, t) is state function of the road bed and v(x, t) is that of the main
cable; τ1(t), τ2(t) are time-varying delays, λ1, λ2, µ1, µ2 are real numbers, [a]+ = max {a, 0} .

Let’s define the following initial and boundary conditions for the system (1).
u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = v(0, t) = v(l, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
ut(x, t− τ1(t)) = f01(x, t− τ1(t)), x ∈ (0, l), t ∈ (0, τ1(0)),

v(x, 0) = v0(x), v
′
(x, 0) = v1(x), x ∈ (0, l),

υt(x, t− τ2(t)) = f02(x, t− τ2(t)), x ∈ (0, l), t ∈ (0, τ2(0)).

(2)

Problem (1) - (2) will be investigated under the following conditions:

τi(·) ∈W 2
2 (0, T ), τ ′i(t) ≤ di < 1

0 < τi0 ≤ τi(t) ≤ τi1, 0 ≤ t ≤ T, i = 1, 2

}
(3)

hi(·) ∈W 1
2 ([0, +∞) ;L2(0, l)), i = 1, 2. (4)

For investigating the problem (1)- (2), we introduce the following notations:

Hk(a, b) =
{
y : y, y

′
, ..., y(k) ∈ L2(a, b)

}
,

Ĥk(a, b) =

{
y : y ∈ Hk(a, b), y(2s) (a) = y(2s) (b) = 0, s = 0, 1, ...,

[
k

2

]}
,

where [r] is the integer part of the number r . We will denote the space Ĥk(0, l) as Ĥk.

The following theorem on the existence and uniqueness of the problem (1), (2) is true.

Theorem 1. Assume that the conditions (3)- (4) are satisfied. Then for any u0 ∈ Ĥ2,
u1 ∈ L2(0, 1), v0 ∈ Ĥ1, v1 ∈ L2(0, 1), f0i(·,−·τ i0), f0iρ(·,−·τ i0) ∈ L2((0, l)× (0, 1)), i = 1, 2,
the problem (1)-(2) has a unique solution (u(x, t), v(x, t)), where

u(·) ∈ C
(
[0,+∞), Ĥ2

)
∩ C1 ([0,+∞), L2(0, 1)) ,

v(·) ∈ C
(
[0,+∞), Ĥ1

)
∩ C1 ([0,+∞), L2(0, 1)) .

Moreover, if u0 ∈ Ĥ4, u1 ∈ Ĥ2, v0 ∈ Ĥ2, v1 ∈ Ĥ1, f0i(·,−·τ1) ∈ L2((0, l)× (0, 1)),
f0iρ(·,−·τ1) ∈ L2((0, l)× (0, 1)), then the solution of (1) satisfies

u(·) ∈ C([0, +∞) , Ĥ4) ∩ C1([0, +∞) , Ĥ2) ∩ C2([0, +∞) , L2(0, 1)),

v(·) ∈ C([0, +∞) , Ĥ2) ∩ C1([0, +∞) , L2(0, 1)) ∩ C2([0, +∞) , L2(0, 1)).
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3 Proof of Theorem 1

In order to establish the existence of a unique solution to (1)-(2), we introduce the new variables
(Showalter, 1997; Barbu, 1976):

z1 (x, ρ, t) = ut(x, t− τ1(t)ρ), ρ ∈ (0, 1), x ∈ (0, l), t > 0,
z2 (x, ρ, t) = υt(x, t− τ2(t)ρ), ρ ∈ (0, 1), x ∈ (0, l), t > 0.

}
(5)

Obviously, z1 and z2 are solutions to the following problems:{
τi(t)zit (x, ρ, t) + (1− ρτ ′i(t))ziρ (x, ρ, t) = 0, ρ ∈ (0, 1), x ∈ (0, l), t > 0
zi (x, ρ, 0) = f0i(x,−ρτ i(0)), x ∈ (0, l), ρ ∈ (0, 1), i = 1, 2.

(6)

So, problem (1)-(2) takes the system equation
utt (x, t) + uxxxx (x, t)+ [u− v]+ + λ1ut (x, t) + λ2z1 (x, 1, t) = 0, in (0, l)× (0,∞) ,
vtt(x, t)− vxx(x, t)− [u− v]+ + µ1υt(x, t) + µ2z2(x, 1, t) = 0, in (0, l)× (0,∞),

τi(t)zit (x, ρ, t) + (1− ρτ ′i(t)) ziρ (x, ρ, t) = 0, in (0, l)× (0, 1)× (0,∞) , i = 1, 2
(7)

with boundary conditions
u (0, t) = uxx (0, t) = u (l, t) = uxx (l, t) = 0,
v (0, t) = v (l, t) = 0,
zi (0, ρ, t) = zi (l, ρ, t) = 0, i = 1, 2

(8)

and initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
v(x, 0) = v0(x), υt(x, 0) = v1(x), x ∈ (0, l),

zi (x, ρ, 0) = f0i(x,−ρτ i(0)), x ∈ (0, l), ρ ∈ (0, 1), i = 1, 2.
(9)

We introduce the following space:

H = Ĥ2 × L2 (0, l)× Ĥ1 × L2 (0, l)× L2((0, 1)× (0, l))× L2((0, 1)× (0, l)),

equipped with the scalar product

⟨ω, ω̃⟩ =
∫ l

0
u1xxũ1xxdx+

∫ l

0
u2ũ2dx+

∫ l

0
u3ũ3dx+

∫ l

0
u4ũ4dx+

+η1

∫ l

0

∫ 1

0
z1z̃1dρdx+ η2

∫ l

0

∫ 1

0
z2z̃2dρdx,

for all ω = (u1, u2, u3, u4, z1, z2)
T , ω̃ = ( ũ1, ũ2, ũ3, ũ4, z̃1, z̃2)

T ∈ H, where

ηi >
τi1 |µi|
1− di

, i = 1, 2. (10)

Let’s define the following operators A0, A1(·) and G(·) in the space H. The linear operator
A0 is defined by

A0(t)ω =



−u2
u1xxxx + λ1u2 + λ2z1 (·, 1)

−u4
−u3xx + µ1u4 + µ2z2 (·, 1)

1−ρτ ′1(t)
τ1(t)

z1ρ

1−ρτ ′2(t)
τ2(t)

z2ρ


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with domain

D (A0(t)) =
{
ω : ω = (u1, u2, u3, u4, z1, z2)

T ∈ H, u1 ∈ Ĥ4, u2 ∈ Ĥ2, u3 ∈ Ĥ2,

u4 ∈ Ĥ1, zi, ziρ ∈ L2((0, 1)× (0, l)), z1(x, 0) = u2(x), z2(x, 0) = u4(x), 0 < x < l, i = 1, 2} .

It is obvious that D (A0(t)) does not depend on t and D (A0(t)) = D (A0(0)).

The nonlinear operators A1(·) and G(·), acting from H into the space H are respectively
defined as

A1(ω) =



0
[u1 − u3]+

0

− [u1 − u3]+
0
0


, G(t) =



0
h1(t, x)

0

h2(t, x)
0
0


.

Let u1 (t) = u (t), u2 (t) = ut (t), u3 (t) = v (t), u4 (t) = υt (t), z1(t) = z1(·, t), z2(t) = z2(·, t) and
denote by

ω = ω(t) = (u1(t), u2(t), u3(t), u4(t), z1(t), z2(t))
T ,

ω(0) = ω0 = (u10, u20, u30, u40, z1(·,−ρτ1(0)), z2(·,−ρτ1(0))).

Then problem (7)-(9) can be rewritten as an initial- value problem{
ω

′
+A0(t)ω +A1(ω) = G(t),

ω(0) = ω0.
(11)

We have the following result on the existence and uniqueness of solutions to the problem (11).

Theorem 2. Assume that the conditions (3)-(4) are satisfied. Then for any ω0 ∈ H, the problem
(11) has a unique solution

ω(·) ∈ C([0, +∞) , H ).

Moreover, if ω0 ∈ D(A0(0)), then the solution of (11) satisfies

ω(·) ∈ C1([0, +∞) ,H) ∩ C([0, +∞) , D (A0(0)) .

To prove the Theorem 2, we should prove the following Lemmas using known results for
operator equations in the monographs (Kato, 1985; Showalter, 1997).

Lemma 1. For every t ∈ ⌈0,∞) , A0γ , (t) is the maximal dissipative operator, where
A0γ(t) = A0(t) + γI, I is the identity operator,

γ = min

{
λ1 −

|λ2|
2

− η1
1

2τ10
− maxt>0 |τ ′1(t)|

2τ10
, µ1 −

|µ2|
2

− η2
1

2τ20
− maxt>0 |τ ′2(t)|

2τ20

}
.

Proof. We start by showing that −A0(t) is dissipative. So, for ω = (u1, u2, u3, u4, z1, z2)
T ∈

D (A0), we have

⟨A0(t)ω, ω⟩ = −
∫ l

0
u1xx(x)u2xx(x)dx+

+

∫ l

0
u2(x) (u1xxxx(x) + λ1u2(x) + λ2z1 (x, 1)) dx+

+

∫ l

0
u3x(x)u4x(x)dx+

∫ l

0
u4(x) (−u3xx(x) + µ1u4(x) + µ2z2(x, 1)) dx+
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+ η1

∫ l

0

∫ 1

0

1− ρτ ′1 (t)

τ1(t)
z1(x, ρ)z1ρ(x, ρ)dρdx+

+ η2

∫ l

0

∫ 1

0

1− ρτ ′2 (t)

τ2(t)
z2(x, ρ)z2ρ(x, ρ)dρdx =

= λ1

∫ l

0
|u2(x)|2dx+λ2

∫ l

0
u2(x)z1(x, 1)dx+

+µ1

∫ l

0
|u4(x)|2dx+ µ2

∫ l

0
u4(x)z2 (x, 1) dx+

+η1

∫ l

0

∫ 1

0

1− ρτ ′1 (t)

τ1 (t)
z1 (x) z1ρ (x, ρ) dρdx+

+η2

∫ l

0

∫ 1

0

1− ρτ ′2 (t)

τ2(t)
z2(x)z2ρ(x, ρ)dρdx. (12)

Using the Gronwall lemma, we obtain the following inequalities∣∣∣∣λ2 ∫ l

0
u2(x)z1(x, 1)dx

∣∣∣∣ ≤ |λ2|
2

∫ l

0
|u2(x)|2dx+

|λ2|
2

∫ l

0
|z1 (x, 1)|2dx, (13)

∣∣∣∣µ2 ∫ l

0
u4(x)z2(x, 1)dx

∣∣∣∣ ≤ |µ2|
2

∫ l

0
|u4(x)|2dx+

|µ2|
2

∫ l

0
|z2 (x, 1)|2dx. (14)

Considering (4) and (6), we get the following equality∫ l

0

∫ 1

0

1− ρτ ′i(t)

τi(t)
zi(x, ρ)ziρ(x, ρ)dρdx =

1− τ ′i(t)

2τi(t)

∫ l

0
|zi(x, 1)|2dx−

− 1

2τi(t)

∫ l

0
|zi(x, 0)|2dx+

τ ′i(t)

2τi(t)

∫ l

0

∫ 1

0
|zi(x, ρ)|2dρdx.

It follows from (4),(5) and (9) that

⟨A0(t)ω, ω⟩ ≥
[
λ1 −

|λ2|
2

− η1
1

2τ1 (t)

] ∫ l

0
|u2(x)|2dx+

+

[
µ1 −

|µ2|
2

− η2
1

2τ2 (t)

] ∫ l

0
|u4(x)|2dx+

+

[
η1

1− τ ′1 (t)

2τ1 (t)
− |λ2|

2

] ∫ l

0
|z1(x, 1)|2dx+

+

[
η2

1− τ ′2 (t)

2τ2 (t)
− |µ2|

2

] ∫ l

0
|z2(x, 1)|2dx ≥

[
λ1 −

|λ2|
2

− η1
1

2τ10

] ∫ l

0
|u2(x)|2dx+

+

[
µ1 −

|µ2|
2

− η2
1

2τ20

] ∫ l

0
|u4(x)|2dx+

+

[
η1

1− d1
2τ11

− |λ2|
2

] ∫ l

0
|z1(x, 1)|2dx+

[
η2

1− d2
2τ21

− |µ2|
2

] ∫ l

0
|z2(x, 1)|2dx−
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−
2∑

i=1

maxt>0 |τ ′i(t)|
2τi0

∫ l

0

∫ 1

0
|zi(x, ρ)|2dρdx. (15)

From (10)-(15) we obtain that

⟨A0(t)ω, ω⟩ ≥ γ∥ω∥2H. (16)

It follows from (16) that

⟨A0γ(t)ω, ω⟩ ≥ 0.

Next, we show that for every t ∈ [0,∞), A0γ(t) is a maximal dissipative operator. To do

this, we will prove that for any t ∈ [0, T ] and G = (g1, g2, g3, g4, g5, g6)
T ∈ H, the problem

ω +A0(t)ω = G (17)

has a solution ω = (u1, u2.u3, u4, z1, z2) ∈ D(A0(t)) = D(A0(0)) .

Writing equation (16) in coordinates, we obtain the following initial-boundary value problem
for systems of equations

u1(x)− u2(x) = g1(x)
u2(x)+u1xxxx(x) + λ1u2(x) + λ2z1 (x, 1) = g2(x)

u3(x)− u4(x) = g3(x)
u4(x)− u3xx(x) + µ1u4(x) + µ2z2(x, 1) = g4(x)

z1(x, ρ) +
1−ρτ ′1(t)

τ1(t)
z1ρ(x, ρ) = g5(x, ρ)

z2(x, ρ) +
1−ρτ ′2(t)

τ2(t)
z2ρ(x, ρ) = g6(x, ρ)


, 0 ≤ x ≤ l, 0 ≤ ρ ≤ 1, (18)

with boundary conditions

ui(0) = ui(l) = 0, i = 1, ..., 4 (19)

u1xx(0) = u1xx(l) = 0, (20)

zi(0, ρ) = zi(l, ρ), ρ ∈ (0, 1) , i = 1, 2, (21)

and initial conditions

z1(x, 0) = u2(x), 0 ≤ x ≤ l (22)

z2(x, 0) = u4(x), 0 ≤ x ≤ l. (23)

By virtue of (22), from the fifth equation of system (18), we get that

z1(x, ρ) +
1− ρτ ′1 (t)

τ1(t)
z1ρ(x, ρ) = g5(x, ρ),

z1(x, 0) = u1(x)− g1(x).

From this follows that

z1ρ +
τ1 (t)

1− ρτ ′1 (t)
z1 = g̃5, (24)

z1(x, 0) = u1(x)− g1(x), (25)

where g̃5 =
τ1(t)

1−ρτ ′1(t)
g5.
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Solving (24), (25) we get

z1 = z1(x, ρ) =
(
1− ρτ ′1 (t)

) τ1(t)

τ ′1(t)

[
u1(x)− g1(x) + τ1(t)

∫ ρ

0

(
1− sτ ′1 (t)

)− τ1(t)

τ ′1(t)
−1

g5(x, s)ds

]
.

Hence, it is clear that

z1(x, 1) =
(
1− τ ′1 (t)

) τ1(t)

τ ′1(t) {u1(x)− g1(x)}+

+
(
1− τ ′1 (t)

) τ1(t)

τ ′1(t) τ1(t)

∫ 1

0

(
1− sτ ′1 (t)

)− τ1(t)

τ ′1(t)
−1

g5(x, s)ds. (26)

Similarly, we have

z2(x, 1) =
(
1− τ ′2 (t)

) τ2(t)

τ ′2(t) { u3(x)− g3(x)}+

+
(
1− τ ′2 (t)

) τ2(t)

τ ′2(t) τ
2
(t)

∫ 1

0

(
1− sτ ′2 (t)

)− τ2(t)

τ ′2(t)
−1

g6(x, s)ds. (27)

From (18),(26) and (27) it follows that u(x) is a solution to the following boundary value
problem

u1xxxx(x) + k1(t)u1 (x) = ψ1, (28)

u1(0) = u1(l) = u1xx(0) = u1xx(l) = 0, (29)

where

k1(t) = 1 + λ1 + λ2
(
1− τ ′1 (t)

) τ1(t)

τ ′1(t)

ψ1 = [1+λ1+λ2
(
1− τ ′1 (t)

) τ1(t)

τ ′1(t) ]g1 + g2+

+λ2τ1(t)
(
1− τ ′1 (t)

) τ1(t)

τ ′1(t)

∫ 1

0

(
1− sτ ′1 (t)

)− τ1(t)

τ ′1(t)
−1
g5(x, s)ds.

Similarly, from (19),(20) (26) and (27), we get

−u1xx(x) + k2(t)u1(x) + (1 + µ1 + µ2)u1 (x) = ψ3, (30)

u1(0) = u1(l) = 0, (31)

where

ψ3 = [1+µ1+µ2
(
1− τ ′2 (t)

) τ2(t)

τ ′2(t) ]g3 + g4+

+µ2τ2(t)
(
1− τ ′2 (t)

) τ2(t)

τ ′2(t)

∫ 1

0

(
1− sτ ′1 (t)

)− τ2(t)

τ ′2(t)
−1

g6(x, s)ds.

We define the following bilinear form in the space V = Ĥ2 × Ĥ1:

B(U, W ) =

∫ l

0
u1xxw1xxdx+

∫ l

0
u3xw̃1xdx+ κ1(t)

∫ l

0
u1w1dx+ κ2(t)

∫ l

0
u3w̃1dx,

and the linear form

L(w̃) =
⟨
f̃ , ũ

⟩
=

∫ l

0
ψ1w1dx+

∫ l

0
ψ3w3dx
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where ũ = (u1, u3), w̃ = (w1, w3) and g̃ = (ψ1, ψ3 ). Let’s show that B(ũ, w̃) and L(W ) satisfy
the conditions of Lax-Milgram theorem. By using Hölder’s inequality, we obtain

B (ũ, w̃) ≤
(∫ l

0
|u1xx|2dx

) 1
2
(∫ l

0
|w1xx|2dx

) 1
2

+

+

(∫ l

0
|u3x|2dx

) 1
2
(∫ l

0
|w3x|2dx

) 1
2

+

+ max
0≤t≤T

k1 (t)

(∫ l

0
|u1|2dx

) 1
2
(∫ l

0
|w1|2dx

) 1
2

+

+ max
0≤t≤T

k2 (t)

(∫ l

0
|u3|2dx

) 1
2
(∫ l

0
|w3|2dx

) 1
2

.

Thus B(ũ, w̃) is continuous, acting from V × V to R.
Estimating from below, we obtain

B (ũ, ũ) =

∫ l

0
|u1xx|2dx+

∫ l

0
|u3x|2dx+ κ1(t)

∫ l

0
|u1|2dx+

+κ2(t)

∫ l

0
|u3|2dx ≥ C0 ∥ũ∥2V ,

where C0 = min{1, min0≤t≤T κ1(t) ,min0≤t≤T κ2(t)}.
On the other hand,

|L(w̃)| ≤
∣∣∣∣∫ l

0
ψ1w1dx

∣∣∣∣+ ∣∣∣∣∫ l

0
ψ3w3dx

∣∣∣∣ ≤ 1

2(∫ l

0
|ψ1|2dx

) 1
2
(∫ l

0
|w1|2dx

) 1
2

+

(∫ l

0
|ψ3|2dx

) 1
2
(∫ l

0
|w3|2dx

) 1
2

.

Thus, the bilinear form B and the linear functional L satisfy the conditions of the Lax-
Milgram theorem (Evans, 2010). So, there exists a unique ũ = (u1, u3) ∈ Ĥ2 × Ĥ1 satisfying

B(ũ, w̃) = L(w̃), ∀ w̃ ∈ Ĥ2 × Ĥ1. (32)

Consequently, u2 = u1 − f1 ∈ Ĥ2, u4 = u3 − f3 ∈ Ĥ1 and

z1 (·, ρ) , z2 (·, ρ) , z1ρ (·, ρ) , z2ρ (·, ρ) ∈ L2(0, l).

Using (27) and (28), we get z1 (·, ρ), z2 (·, ρ) ∈ L2((0, l)×(0, l)). Thus, (17) has a unique solution
ω = (u1, u2, u3, u4, z1, z2)

T ∈ H.

Lemma 2. The linear operator A0(t) is strongly continuously differentiable.

Proof. Let ω = (u1, u2, u3, u4, z1, z2)
T ∈ D(A0(0)). Then from the definition of A0(t) we get

A′
0(t)ω =



0
0

0
0

−ρτ ′′1(t)τ1(t)−[1−ρτ ′1(t)]
τ21 (t)

z1ρ
−ρτ ′′2(t)τ2(t)−[1−ρτ ′2(t)]

τ22 (t)
z2ρ


.
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From this we have

∥∥A′
0(t)ω

∥∥2
H =

∫ 1

0

∫ l

0

∣∣∣∣−ρτ ′′1 (t) τ1(t)− [1− ρτ ′1 (t)]

τ21 (t)
z1ρ(x, ρ)

∣∣∣∣2dxdρ+
+

∫ 1

0

∫ l

0

∣∣∣∣−ρτ ′′2 (t) τ1(t)− [1− ρτ ′2 (t)]

τ22 (t)
z2ρ(x, ρ)

∣∣∣∣2dxdρ ≤

≤ max
0≤t≤T

∣∣∣∣−ρτ ′′1 (t) τ1(t)− [1− ρτ ′1 (t)]

τ21 (t)

∣∣∣∣2 . ∫ 1

0

∫ l

0
|z1ρ(x, ρ)|2dxdρ ≤

≤ max
0≤t≤T

∣∣∣∣∣∣
−ρτ ′′

2 (t) τ1 (t)−
[
1− ρτ

′
2 (t)

]
τ22 (t)

∣∣∣∣∣∣
2

.

∫ 1

0

∫ l

0
|z2ρ (x, ρ)|2dxdρ ≤

≤M{
∫ 1

0

∫ l

0
|z1ρ(x, ρ)|2dxdρ+

∫ 1

0

∫ l

0
|z2ρ (x, ρ)|2dxdρ},

where

M = max
0≤t≤T


∣∣∣∣−ρτ ′′1 (t) τ1(t)− [1− ρτ ′1 (t)]

τ21 (t)

∣∣∣∣2,
∣∣∣∣∣∣
−ρτ ′′

2 (t) τ1 (t)−
[
1− ρτ

′
2 (t)

]
τ22 (t)

∣∣∣∣∣∣
2
 .

Using the definition of the norm in the space H and Lemma 2, we obtain that∥∥∥A′
0(t)ω

∥∥∥
H
≤ c ∥A0(0)ω∥H .

Lemma 3. The nonlinear operator A1(·) satisfy Lipschitz condition.

Proof. Since
∣∣[α]+ − [β]+

∣∣ ≤ |α− β|, for any α, β, we get

∥A1(ω2) − A1(ω1)∥ H ≤ ∥ω2 − ω1∥ H.

The definition of G(·) also implies the following assertion.

Lemma 4. G(·) ∈W 1
2 (0, T ; H)

According to Lemma 1-4, the operator A0 (t) + A1 (·) and the function G(t) satisfy all con-
ditions of the theorems on the existence and uniqueness of solutions to the Cauchy problem for
operator differential equations (Kato, 1985; Showalter, 1997; Barbu, 1976).
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