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Abstract. This work presents sediment transport in open channel hydraulics over mobile bed. The mathematical

model is a combination of the shallow water equations for water-sediment mixture, the sediment transport diffusion

and the bed morphology change equations. The system is solved by the finite volume Roe scheme, associated with

an original treatment of the source term. In order to show the performance of the non-capacity model and the

numerical scheme on problems with low sediment entrainment, the method is applied on open channel hydraulic.

The numerical scheme treat different case of channels using different size of sediments. Through the obtained

results the scheme proved a high level of performance, stability and accuracy.
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1 Introduction

Open channel hydraulics has always been a very interesting domain for researchers, specially
by being a source of hydro-power generation, water reserve, irrigation, peach, etc. Different
mathematical models has been developed to study this phenomenon, which are well cited in
Jelti et al. (2017); Cao et al. (2002) developed a new mathematical model called ”the coupled
model”, considering the strong interaction between flow, sediment transport and morphological
evolution of the bed. The coupled model uses the shallow water equations for sediment-water
mixture instead of the simple shallow water equations to model the sediment transport. The
coupled model links all conservation equations and provides a synchronous resolution procedure,
also, it treats entrainment and deposition sediment as independent processes (this property is
called non-capacity model) (Jelti et al., 2017; Cao et al., 2004; Wu, 2008).

This work uses a 1D noncapicity model for open channel hydraulics, sediment transport and
mobile bed. The mathematical model consists of four equations; the mass and the momentum
conservation equation for the water-sediment mixture, the transport diffusion equation for sed-
iment particles and bed morphology change equation, together with empirical formulations for
bed friction and sediment exchange between the water column and the bed (Jelti et al., 2017;
Wu, 2008).

The governing equations are solved numerically using the finite volume Roe scheme formu-
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lation. An original formulation to discretize the source term which satisfies the C-property is
introduced. The MUSCL method with generalized minmod limiter and the Runge-Kutta are
used to achieve a second order accuracy. The numerical scheme well resolves several tests with
no-spurious observed oscillations even in the most complicated problems as dam-break flow (Jelti
et al., 2017).

In order to show the capacity of the model to detect small bed change even in problems
with low sediment entrainment, in this paper the application of the model is restricted on open
channel hydraulics, and attention is given to the evolution of the flow, sediment transport and
bed morphological development. Many results are interpreted, such as the effect of the sediment
size on the bed mobility and velocity profiles, etc.

This work is an application of partial differential equations which requires a robust numerical
methods (Nachaoui et al., 2021; Gasimov et al., 2019; Rasheed et al., 2021). In order to obtain
the best approximation of the real physical problem, the mathematical model has been developed
several time during this decades. The main value of this work is the mathematical modelization
of the open channel hydraulics over mobile bed using the coupled model and the non-capacity
model. The obtained mathematical model is resolved by the well known Roe scheme with a new
discretization of the source term developed in (Jelti et al., 2017).

This work is organized as follows. Section 2 presents the mathematical model for open
channel hydraulic over erodible sediment bed, as well as the empirical functions considered. In
Section 3, the Roe scheme is formulated and discretized. The new discretization of the source
term is introduced in Section 4. Section 5 treats the tests and the numerical results. Finally
concluding remarks are summarized in Section 6.

2 The mathematical model

There are many mathematical models developed in the literature, in this study we apply the
mathematical model used in Jelti et al. (2017) on open channel hydraulic over different types of
bottoms.

We consider in this work, a one-dimensional non-capacity model in a channel with rectan-
gular cross section of constant width, over a mobile bed composed of uniform and noncohesive
sediment particles. The governing equations are written as Benkhaldoun et al. (2009); Simpson
& Castelltort (2006); Jelti et al. (2017); Wu (2008); Cao et al. (2002):

∂h

∂t
+
∂(hu)

∂x
=
E −D
1− p

(1)

∂(hu)

∂t
+
∂(hu2 + 1

2gh
2)

∂x
= B (2)

∂(hc)

∂t
+
∂(huc)

∂x
= E −D (3)

∂z

∂t
= −E −D

1− p
(4)

where B is the source term defined by :

B = −gh∂z
∂x
− ρs − ρw

2ρ
gh2 ∂c

∂x
− ghSf −

ρ0 − ρ
ρ

E −D
1− p

u (5)

t is the time, x the streamwise coordinate, h the flow depth, u the depth-averaged streamwise
velocity, z the bed elevation, c the flux-averaged volumetric sediment concentration, g the gravi-
tational acceleration, p the bed sediment porosity. D and E are the sediment deposition and en-
trainment fluxes across the bottom boundary of flow, they represent the exchange between water
column and bed. Sf is the friction slope, ρ = ρw(1−c)+ρsc is the density of water-sediment mix-
ture,
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ρ0 = ρwp + ρs(1 − p) is the density of the saturated bed, ρw and ρs are the densities of water
and sediment, respectively.

Equation (1) represents the mass conservation equation for the water-sediment mixture.
Equation (2)represents the momentum conservation equation for the water-sediment mix-

ture.
The mass conservation equation for sediment is represented by Equation (3), in which sus-

pended and bed load are considered in a single mode indicated by the total sediment load.
Equation (4) indicates the bed change rate.
To complete the governing equations above, the same empirical functions are taken as (Jelti

et al., 2017).

3 Numerical scheme

Several numerical schemes exist, in this study the hyperbolic system (1-4) is solved numeri-
cally using Roe scheme (Roe, 1981). Knowing that, all equations form one system to reach a
synchronous solution. The same procedure is followed in Jelti et al. (2017). Equations (1-4)
arranged in the conservative form:

∂U

∂t
+
∂F (U)

∂x
= S +Q (6)

or non-conservative form:
∂U

∂t
+A(U)

∂U

∂x
= Q (7)

where

U =


h

hu
hc
z

 , F =


hu

hu2 + 1
2gh

2

huc
0

 , S =


0

−gh ∂z∂x −
(ρs−ρw)

2ρ gh2 ∂c
∂x

0
0

 ,

Q =


E−D
1−p

−ghSf − ρ0−ρ
ρ

E−D
1−p u

E −D
−E−D

1−p


the matrix A(U) is given by:

A(U) =


0 1 0 0

gh− u2 − ρs−ρw
2ρ ghc 2u ρs−ρw

2ρ gh gh

−uc c u 0
0 0 0 0


A(U) has the four following distinct real eigenvalues:

λ1 = 0, λ2 = u, λ3 = u−
√
gh, and λ4 = u+

√
gh

The spatial domain is discretized into control volume [xi− 1
2
, xi+ 1

2
] with the same length ∆x.

The time interval is divided into subintervals [tn, tn+1] with uniform size ∆t. We integrate system
(6) using the finite volume method formulation, we obtain the following discrete equation:

∂Ui
∂t

= − 1

∆x

(
Fn
i+ 1

2

− Fn
i− 1

2

)
+ Sni +Qni (8)
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The Euler scheme is used to discritize the time:

Un+1
i = Uni −

∆t

∆x

(
Fn
i+ 1

2

− Fn
i− 1

2

)
+ ∆tSni + ∆tQni (9)

In formulations (8)-(9), Uni , Sni , Qni are the space averages of U , S, Q on the control volume[xi− 1
2
, xi+ 1

2
]

at time tn.
Fni±1/2 are the numerical fluxes at the interfaces x = xi±1/2, they are approximated using

Roe scheme as follows:

Fni+1/2 =
1

2

(
Fn
i+ 1

2
,R

+ Fn
i+ 1

2
,L

)
− 1

2

∣∣∣A(Ũni+ 1
2

)∣∣∣ (Uni+ 1
2
,R
− Un

i+ 1
2
,L

)
(10)

where Fn
i+ 1

2
,R

= F (Un
i+ 1

2
,R

), Fn
i+ 1

2
,L

= F (Un
i+ 1

2
,L

) and Un
i+ 1

2
,R

, Un
i+ 1

2
,L

are the right and left ap-

proximations of the solution U at the interface x = i + 1
2 . The matrix

∣∣∣A(Ũn
i+ 1

2

)
∣∣∣ uses the well

known Roe average Ũn
i+ 1

2

defined by Roe (1981).

To reach a second order finite volume accuracy, we use a monotone upstream-centered scheme
for conservation laws method incorporating a slope limiters in the spatial approximation and
two-step Runge-Kutta TVD method for time integrating as reported in Jelti et al. (2017).

4 Decomposition and discretization of the source term

The source term has a greet effect on the resolution of the system, knowing that a simple central
discretization does not preserve the well known C-property therefore numerical waves can appear.
In this paper, we apply the original discrestization satisfying the C-property developed in Jelti
et al. (2017). Consequently, the source terms given in Equation (6) are decomposed in the
following form

Sni =
1

2
(Sni,R + Sni,L) and Qni =

1

2
(Qni,R +Qni,L) (11)

where
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0
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
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5 Numerical results

In this section, we resolve the numerical scheme presented in the previous chapter. This system
is already applied on several complicated test problem such as dam-break in Jelti et al. (2017),
and approved its capacity to well capture shocks with high accuracy and without producing
any nonphysical oscillations while maintaining the exact conservation property. The principal
goal in this paper is to show the scheme capacity to detect the bed change even in problems
with low sediment entrainment. The first test problem is an open channel hydraulic over mobile
and smooth bed. The second and the third tests problems are open channels over mobile bed
containing different form of bump.

The channel is supposed to be horizontal with rectangular cross-section composed of non-
cohesive and uniform sediments. Step size space is ∆x = 10m and ∆t is computed according to
a specified value of CFL number equal to 0.85.

5.1 Open channel hydraulic over mobile and horizontal bed

Attention in given to the behavior of the flow over movable bed. The channel length is 1, 000 m
with the following initial conditions:

h(x) = 10m, u(0, x) = 0m/s, c(0, x) = 0.001 (12)

The objective of this test is to explore the behavior of the bed and the water free surface
in such fluvial process with low sediment transport over horizontal bed. Knowing that, the
numerical scheme in use is well tested and proves its capacity to model problems involving high
concentration of sediment. In order to show the influence of the diameter, we compute this test
using different sediment diameters d = 1 mm, d = 4 mm and d = 8 mm.
Results of water free surface, bed, concentration and velocity profiles are shown in Figure 1 for
t = 10 min, t = 20 min, and t = 1 hour.

• Ten minutes after the water flow, a remarkable erosion occurred for the bottom composed
of sediments of d = 4 mm and d = 4 mm contrariwise to that one composed of sediments
of d = 8 mm, and this is due to the capacity of the flow to erode the smaller grains easily
than the larger ones. After twenty min of the flow the channel’s bottom try to find his
initial level, this is in accordance with the experiments carried out by Capart & Young
(1998);

• As we can see the water free surface stayed stable for both sediments sizes at t = 10 min,
at t = 20 min and t = 1 hour. The variation of this profile is negligible comparing to the
evolution of the water free surface after dam-break flow Jelti et al. (2017), and this is due
the bed rate change;

• As it is shown the values of the concentration profiles increase after ten minutes of flow,
and the highest value back to the the smaller sediment size. The concentration profiles
decrease after twenty minutes;

• The highest value of velocities back to the sediment of medium size. The same for the
velocity profiles, it increase ten minute after the flow and decrease twenty minute afterward.

5.2 Open channel hydraulic over mobile bed containing a bump

This problem is of length 1, 000m with the following initial conditions:

z(x) =

{
sin2(π(x−300)

200 ), 300 < x ≤ 500

0,Otherwise
,

Q(0, x) = 10m3/s, c(0, x) = 0.001, h(x) = 10− z(x)
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Figure 1: Bed and water levels , concentration and velocity profiles using different diameters and
different computational time.

The same test was studied in Benkhaldoun et al. (2009); Hudson and Sweby (2003) among
others, but computed with different mathematical models and different numerical schemes. We
remember that suspended sediment and bed load are treated in single mode. In this test we use
sediments of 1 mm of diameter.

Noting that IC represents the initial condition.

• As can be seen in figure 2 Roe scheme with the new discretization locates the correct bump
location during the time;

• The water free surface remain stable except for small lowering level below the bump;

• We remark that, one minute after the flow the bottom is eroded by -1 m and the level of
the bump is lowered. After 20 min the bump is definitely crushed, and the phenomena of
aggregation appeared which justifies the raising of the level of the bottom after 50 hours .

• As it is obvious in figure 2 the velocity value increase one minute after the flow (after
being null as initial condition), and then it decrease after 20 minute arriving at zero after
10 hours;

• The concentration value increase specially around the bump in first 20 min after the flow,
and decrease until zero after 10 hours.
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Figure 2: Bed and water levels , concentration and velocity profiles at different computational time.

5.3 Open channel hydraulic over mobile bed containing a rectangular bump

Results in the previous test were very satisfying, so we decided to test the flow over a bottom
with rectangular bump where only sediments of 1 mm are used. This problem is of length
1, 500m with the following initial conditions:

z(x) =

{
8, |x− 750| ≤ 1500/8

0,Otherwise
,

Q(0, x) = 10m3/s, c(0, x) = 0.001, h(x) = 15− z(x)
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Figure 3: Bed and water levels , concentration and velocity profiles at different time using sediments
of 1 mm of size.

Roe scheme with the new discretization well simulates the rectangular bump and locates the
changes during the time in figure 3, and remarks are reported as follows

• Contrary to the previous test, the water free surface sustain remarkable changes and this
is due to the height of the rectangular bump. After 1 hour it becomes stable;

• We attend a bump destruction after 1 min of the flow. Erosion reach -1 m in upstream,
the level of the bottom becomes stable after 1 hour;

• After being null, the concentration increase 1 min after the flow. After that it decrease
until zero;

• The velocity profiles undergoes several fluctuations, generally it decrease after 1 min ar-
riving at a very low level.

6 Conclusion

The mathematical model associated to the finite volume Roe scheme with the new discretization
of the source term treated very well the dam-break problem as it is presented in Jelti et al.
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(2017). In order to test and to show the ability of this numerical scheme to detect the effect of
the transport sediment on the flow in problems with low sediment entrainment, we applied it in
this paper on open channel hydraulics.

This work is an application of Roe scheme with an original discretization of the source term
on a problem of open channel hydraulics of different types: channel over mobile and horizontal
bed, and on channel over mobile bed with a bump. Through the obtained results, the numerical
scheme detected the bed rate change and changes on velocity, concentration and free water-
surface profiles.

As we know that the effect of sediment transport on the flow is less pronounced in problems as
channel hydraulics than dam-breaks ones, even this the Roe scheme with the new discretization
detected the bed rate change in figures 1, 2 and 3. We conclude with the remarks brought by
the obtained results:

• When the sediment size is finer, the bed mobility is greater and vice versa;

• Sediment transport interact with flow even in problems with low sediment concentration;

• The numerical scheme in use capt very well changes related to bed and water free surface.
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