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Abstract. An evolution equation is a partial differential equation that describes the time evolution of a physical

system starting from given initial data. Evolution equations arise from many areas of applied and engineering

sciences. To this end, this article investigates the analytical studies of a generalized geophysical Korteweg-de Vries

equation in ocean physics. The examination of this model is conducted via the Lie group theory of differential

equations. In the first place, point symmetries, which are constituent elements of a four-dimensional Lie algebra,

are systematically computed. Thereafter, one-parameter transformation groups for the algebra are calculated.

Besides, going forward, a one-dimensional optimal system of subalgebras is derived in a procedural manner. Sequel

to this, the subalgebras and combination of the achieved symmetries are invoked in the reduction process which

enables the derivation of nonlinear ordinary differential equations associated with the generalized geophysical

Korteweg-de Vries equation under study. Most of the achieved nonlinear ordinary differential equations are further

solved either via direct integration or using a power series approach. Furthermore, travelling wave solutions are

initially obtained. This is attained via direct integration and the use of Jacobi elliptic function approach. These

techniques enable the attainment of various exact soliton solutions, including non-topological soliton solutions as

well as general periodic function solutions of note, such as cosine amplitude, sine amplitude, and delta amplitude

solutions of the model. Furthermore, numerical simulations of the solutions are invoked to gain a gross knowledge

of the physical phenomena represented by the under-study generalized geophysical Korteweg-de Vries equation in

ocean physics. In the end, the investigation further gives attention to the calculation of conserved vectors for the

model using Ibragimov’s theorem for conservation laws, as well as Noether’s theorem.
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1 Introduction

In our general surroundings, we experience a large number of perplexing actual peculiarities
that show nonlinearity. These peculiarities are precisely described by nonlinear partial dif-
ferential equations (NPDEs), with models going from populace environment and the study of
disease transmission to science, plasma physical science, liquid mechanics, and nonlinear cir-
cuits. To acquire a profound comprehension of these peculiarities, it is vital to find answers for
the differential conditions that oversee them. Thus, this necessitate the examination of solitary
wave solutions of these NPDEs in exact structure. Extensive research continues to be con-
ducted on these equations, as they play a crucial role in modelling relationships between various
physical quantities found in nature and human creations. Recent advancements in computer
technology have greatly improved our ability to develop algorithms for solving NPDEs. Despite
this progress, it is important to acknowledge the brilliant minds that have laid the theoretical
groundwork for these technologies to flourish. In recent times, numerous researchers with a
strong interest in nonlinear physical phenomena have been exploring exact solutions of NPDEs
due to their significance in analyzing model outcomes. It is vital that research on closed-form
solutions to NPDEs plays a crucial role in understanding specific physical scenarios. The range
of solutions to NPDEs holds a significant position in varieties of scientific fields. These are in-
clusive of electromagnetic theory, chemical physics, optical fibers, hydrodynamics, meteorology,
plasma physics, biology, heat flow, chemical kinetics, and geochemistry.

Recognizing that many prominent scientists view nonlinear science as a key frontier for gain-
ing a deeper understanding of nature, we introduce relevant models including the Boussinesq-
Burgers-type system (Gao et al., 2020), which describes shallow water waves near ocean shores
and lakes. Additionally, the study explored a generalized form of the KdV-ZKe model as pre-
sented in the publication by Khalique & Adeyemo (2020a). This model was used to analyze
the mixing of warm isentropic fluid with cold static components and hot isothermal substances
in fluid dynamics. Furthermore, an examination in another source focused on the modified
and generalized ZKe model, highlighting ion-acoustic solitary waves found in a magneto-plasma
environment containing electron-positron-ion particles present in a native universe (Du et al.,
2020). This model was applied to study waves in dust-magneto, ion, and dust-ion acoustics
within laboratory dusty plasmas. Moreover, the study delved into vector bright solitons and
their interactions within the coupled Fokas-Lenells system (Zhang et al., 2020). The investiga-
tion also extended to femto-second optical pulses embedded in double-refractive optical fibers,
modeled using NPDEs. The listed publications Ay & Yasarv (2023); Babajanov & Abdikarimov
(2022); Alhasanat (2023); Bruzon et al. (2022); Chulián et al. (2020); Bayrakci et al. (2023);
Demiray & Duman (2023); Simbanefayi et al. (2023); Zhu (2022); Zhang (2022) can be visited
to peruse more of the applications of NPDEs in various ways.

After extensive research, it has been determined that there is no universal approach for
achieving exact solutions to NPDEs. However, in order to address this persistent issue, math-
ematicians and physicists have developed several effective techniques. For instance, Sophus
Lie, who lived between 1842 and 1899, made significant contributions in the field of Lie alge-
bras, providing a unified approach to solving a wide range of differential equations (Olver, 1993;
Ovsiannikov, 1982). Recent advancements in solving differential equations include Kudryashov’s
approach (Kudryashov, 2012), Bäcklund transformation (Gu, 1990), Hirota’s bilinear approach
( Hirota, 2004), simplest equation technique (Kudryashov & Loguinova, 2018), Darboux trans-
formation method (Hyder & Barakat, 2020), sine-Gordon equation expansion approach (Chen &
Yan, 2005), F-expansion approach (Zhou et al., 2018), bifurcation technique (Wen, 2020; Zhang
& Khalique, 2018), and tanh-coth approach (Wazwaz, 2018).

Since the establishment of Petviashvili and Kadomtsev’s hierarchy equation models over fifty
years ago, numerous research papers have been published, each delving into different aspects of
this complex field of equations. For instance, see Kuo & Ma (2020); Wazwaz (2012); Ma & Fan
(2011); Ma (2015); Zhau & Han (2017); Khalique et al. (2020) for more of the point raised.
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One of these interesting models is the popular Korteweg-de Vries equation Wazwaz (2008)

ψt + pψψx + qψxxx = 0, p, q 6= 0, (1)

which is commonly known as “KdV” model has gained attraction over the years due to its
applications in various physical phenomena. There are different variations of this model that
incorporate the altered and summed up forms with power-regulations introduced in like manner
as Wazwaz (2008); Yan (2008); Wazwaz (2006)

ψt + pψ2ψx + qψxxx = 0 (2)

and

ψt + pψnψx + rψ2nψx + qψxxx = 0, (3)

where constant parameters r and n are non-zero real numbers. For a long time, KdV as well
as KdV-related models and their single waves have been the fundamental subject of much
exploration because of their job in depicting numerous actual settings. These days, there are
many articles about KdV as well as KdV-related models and their lone waves, particularly
the numerical hypothesis behind these sorts of model conditions is a hot subject of dynamic
examination. For example, in Wazwaz (2008), the author examined (1)–(3), where in his work,
he presented new plans, each consolidating two exaggerated capabilities, to concentrate on the
situations. Eventually, the review uncovered that this class of conditions gives traditional solitons
and occasional arrangements. It was likewise shown that the proposed plans created sets of
altogether new singular wave arrangements notwithstanding the conventional arrangements.
The author later thought that the examination could be applied to a wide class of nonlinear
development conditions.

Besides, Yan in (Yan (2008)) explored condition (2) with the centering (+) as well as defo-
cusing (−) branches, where many new kinds of paired voyaging wave occasional arrangements
were gotten for the situation as far as Jacobi elliptic capabilities such as sine, cosine and delta
abundancy arrangements and their expansions. Plus, the asymptotic properties of a portion of
the found arrangements were dissected. Also, with the guide of Miura change, Yan likewise gave
the comparing twofold voyaging wave occasional arrangements of the altered KdV condition (2).
Besides, in (Wazwaz (2006)), Wazwaz in his work analyzed the summed up KdV model with two
power law nonlinearities (3). The tanh technique and two arrangements of ansatze including
exaggerated capabilities were presented for logical investigation of the situation. New sorts of
single wave arrangements were officially inferred.

Later, another type of the KdV equation was proposed by Quirchmayr and Geyer in Hosseini
et al. (2024); Karunakar & Chakraverty (2006), which they called the geophysical KdV equation

ψt − w0ψx +
3

2
ψψx +

1

6
ψxxx = 0 (4)

with parameter w0 connoting the Coriolis. The determined model (4), is utilized to investigate
the proliferation of maritime waves and has received a lot of consideration from scholastic re-
searchers. For instance, in Karunakar & Chakraverty (2006), the authors explored the impact of
Coriolis consistent on the arrangement of the geophysical KdV condition (4). From that point
of examination, it was reasoned that the steady of Coriolis is straightforwardly corresponding
to wave level and conversely relative to frequency. The presence of Coriolis expression in the
situation has a noteworthy change, looking like the arrangement. In addition, in Rizvi et al.
(2020), the authors recovered protuberance soliton answer for model condition (4) with the
assistance of Hirota bilinear technique. They additionally got bump crimp soliton (which is a
cooperation of knot). with one crimp soliton), irregularity, intermittent arrangements (which is
framed by connection between occasional waves and endlessly irregularity crimps intermittent
arrangements, (which is framed by the connection of occasional waves and bumps with one
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crimp soliton). The elements of these arrangements were additionally analyzed graphically by
choosing critical boundaries. Besides, in Alharbi & Almatrafi (2002) the authors recovered a
few new lone answers for (4). The acquired arrangement from carrying out the shooting strat-
egy was effectively utilized as an underlying incentive for the versatile methodology which was
used to develop the mathematical arrangement of the issue. The built-in definite arrangements
harmonized with the acquired mathematical arrangements. The precision of the introduced
mathematical approximations was likewise examined. Furthermore, they applied Fourier’s idea
to investigate the exactness and security of the mathematical plans, which they found to be
genuinely steady. In Hosseini et al. (2024), the authors considered an extended version of (4) as

ψt − w0ψx +
3

2
ψψx +

1

6
ψxxx = −

(
β0 + β1ψ + β2ψ

2 + · · ·+ βnψ
n
)
, (5)

where they officially presented a source, which is a polynomial of degree n in the obscure capa-
bility, in the model. Through the Painlevé investigation, it is shown that (5) with the source
is not integrable. Under a few fundamental circumstances for integrability, a few crimp type
singular waves to the unique instances of the overseeing model when n = 2 and n = 4 are
inferred utilizing the Kudryashov’s technique.

Having gone through the literature, our work delves into the exploration of the generalized
form of geophysical Korteweg-de Vries equation (4), also depicted as (1+1)D-GeoKdVe, which
reads

ut + aux + buux + cuxxx = 0, (6)

where u = u(x, t) and a, b, c 6= 0 are real numbers. One can easily see that (4) can be recovered
from (6), if u = ψ, a = −w0, b = 2/3 and c = 1/6. Thus, the latter is a general version of the
former which implies that the former is contained in the latter.

The main goal of this research is to examine the generalized (1+1)D-GeoKdVe (6) using
Lie group analysis. By applying this approach, we can determine the Lie point symmetries of
the understudied model, which can then be used to create a detailed set of one-dimensional
subalgebras. As a result, a variety of exact general solutions for the (1+1)D-GeoKdVe model
(6) could be obtained. Furthermore, besides obtaining exact solutions, we will also establish
conservation principles for equation (6) by invoking the Noether theorem as well as theorem by
Ibragimov for conserved currents.

Consequently, the article is structured as follows. Section 2 contains the procedural pattern
through which Lie point symmetries of (1+1)D-GeoKdVe (6) is obtained, but before that the
required introduction is presented. Besides, in Section 2, optimal system of one dimensional
subalgebras are calculated. Meanwhile, symmetry reductions as well as various analytic trav-
elling wave solutions are further secured. Section 3 explicates the calculated conservation laws
via Ibragimov’s theorem as well as Noether’s theorem (Noether, 1918). These are followed by
the concluding remarks in Section 4.

2 Symmetry analysis and exact solutions of (6)

We begin by deriving the Lie point symmetries of (1+1)D-GeoKdVe (6), following which we
utilize them to derive exact solutions.
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2.1 Lie point symmetries of (1+1)D-GeoKdVe (6)

A one-parameter transformation groups is derived for equation (6), prompting further consider-
ation. So, we have

x̃ ≈ x+ ε ξ1(x, t, u) +O(ε2),

t̃ ≈ t+ ε ξ2(x, t, u) +O(ε2),

ũ ≈ u+ ε Ψ(x, t, u) +O(ε2). (7)

The symmetry group of (1+1)D-GeoKdVe (6) will be formed by the vector field

S = ξ1(x, t, u)
∂

∂t
+ ξ2(x, t, u)

∂

∂x
+ Ψ(x, t, u)

∂

∂u
,

where coefficient ξi, i = 1, 2 and Ψ is a function of (x, t, u), is a Lie point symmetry of (1+1)D-
GeoKdVe (6) if

pr(3)S[ut + aux + buux + cuxxx] = 0, (8)

whenever ut + aux + buux + cuxxx = 0. Here pr(3)S represents the third extension of vector S,
which is defined by

pr(3)S =S + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ ζxxx

∂

∂uxxx
(9)

with ζt, ζx, ζtx, ζxx, and ζxxx defined by the general formulas

ζαi = Di(η
α)− uαjDi(ξ

j),

ζαij = Dj(η
α
i )− uαikDj(ξ

k), (10)

where Di, are the total derivatives given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · , i, j = 1, ..., n. (11)

By expanding equation (8) and separating it based on the derivatives of the function u, we
are able to derive the following system of overdetermined linear partial differential equations
(LPDEQs):

ξ1u = 0, ξ1x = 0, ξ1tt = 0, 3ξ2x − ξ1t = 0, ξ2tt = 0,

ξ2u = 0, 3bΨ + 2 (a+ bu) ξ1t − 3ξ2t = 0,

whose solutions are

ξ1(x, t, u) = A1t+A2, ξ
2(x, t, u) =

1

3
A1x+A3t+A4,

Ψ(x, t, u) = − 2

3b
(bu+ a)A1 + 3A3

with arbitrary constants A1, A2 together with A3. The above produces the following two trans-
lational symmetries and one scaling symmetry, viz.,

S1 =
∂

∂t
, S2 =

∂

∂x
, S3 = bt

∂

∂x
+

∂

∂u
,

S4 = 3bt
∂

∂t
+ bx

∂

∂x
− 2 (a+ bu)

∂

∂u
. (12)

The one-parameter groups generated by the above symmetries S1 and S2 describes time and
space-invariance of the (1+1)D-GeoKdVe (6).
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Theorem 1. If group Gk
ε (x, t, u), k = 1, 2, 3, 4 defines one parameter groups of transformation

computed by vectors S1,S2,S3,S4 in which each of the achieved vectors achieves a generated
transformation-group, representations of these are explicated accordingly as

G1
ε : (x̃, t̃, ũ) −→ (x, t+ ε1, u),

G2
ε : (x̃, t̃, ũ) −→ (x+ ε2, t, u),

G3
ε : (x̃, t̃, ũ) −→

(
x+ ε3t, t, u+

ε3
b

)
,

G4
ε : (x̃, t̃, ũ) −→

{
xe

1
3
ε4 , teε4 ,−1

b

[
ae

2
3
ε4 − (a+ bu)

]
e−

2
3
ε4

}
.

Theorem 2. If u(x, t) = M(x, t) solves the (1+1)D-GeoKdVe (6), then so do the functions
structured in the format

u1(x, t) =M(x, t+ ε1),

u2(x, t) =M(x+ ε2, t),

u3(x, t) =M(x+ ε3t, t)−
ε3
b
,

u4(x, t) =
1

b

{
be

2
3
ε4M

(
xe

1
3
ε4 , teε4 ,−1

b

[
ae

2
3
ε4 − (a+ bu)

]
e−

2
3
ε4

)
+ ae

2
3
ε4 − a

}
.

2.2 Optimal system of one-dimensional subalgebras

In this part, we investigate the balances referenced before to fabricate an ideal arrangement of
1-D subalgebras. In this manner, we utilize the subsequent ideal arrangement of one-layered
subalgebra to accomplish decreases in balance and gather invariant answers for condition (6).
This cycle will permit us to improve on the situation and find arrangements that are invari-
ant under specific gatherings. We shall be following the procedure outlined in Olver (1993);
Hu et al. (2015). The task involved in obtaining an optimal system of subalgebras is as well
equivalent to that of achieving an optimal system of subgroups. This classification problem for
one-dimensional subalgebras is fundamentally same as the problem involved in the classification
of the orbits of adjoint representation. Thus, this problem is thrashed via the engagement of
naive approach whereby a general element taken from the Lie algebra is subjected to different
adjoint transformations so that it can be simplified as much as possible. It is important to note
that the adjoint representations shall be determined through the use of Lie series.

Ad(exp(εSi))Sj =
∞∑
n=0

εn

n!
(adSi)

n(Sj) = Sj − ε[Si,Sj ] +
ε2

2!
[Si, [Si,Sj ]]− · · · (13)

with a real number ε as well as the commutator [Si,Sj ] is defined by

[Si,Sj ] = SiSj −SjSi.

Table 1 and Table 2 display accordingly, the commutator table of the Lie symmetries as well as
the adjoint representations of the symmetry group of equation (6) on its Lie algebra.

Table 1. Commutator table of the Lie algebra of equation (6)

[ , ] S1 S2 S3 S4

S1 0 0 S2 −3S1

S2 0 0 0 −S2

S3 −S2 0 0 2S3

S4 3S1 S2 −2S3 0
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Table 2. Adjoint table of the Lie algebra of equation (6)

Ad S1 S2 S3 S4

S1 S1 S2 S3 − ε1S2 S4 + 3ε1S1

S2 S1 S2 S3 S4 + ε2S2

S3 S1 + ε3S2 S2 S3 S4 − 2ε3S3

S4 e−3ε4S1 e−ε4S2 e2ε4S3 S4

Suppose, we consider S = a1S1 + a2S2 + a3S3 + a4S4 to be the general element belonging to
the Lie algebra L4 spanned by (12). Thus,

Ad
(
eε1S1

)
S = a1Ad

(
eε1S1

)
S1 + a2Ad

(
eε1S1

)
S2 + a3Ad

(
eε1S1

)
S3 + a4Ad

(
eε1S1

)
S4

= (a1 + 3a4ε1)S1 + (a2 − a3ε1)S2 + a3S3 + a4S4

= [S1S2S3S4] ·M ε1
1 · [a1 a2 a3 a4]

T ,

where matrix M ε1
1 is calculated in this space as

M ε1
1 =


1 0 0 0
0 1 0 0
0 −ε1 1 0

3ε1 0 0 1

 .

In the same vein, other matrices M ε2
2 , M ε3

3 and M ε4
4 can be achieved through the application of

adjoint action of S2, S3, and S4, to S, and these furnish

M ε2
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 ε2 0 1

 , M ε3
3 =


1 ε3 0 0
0 1 0 0
0 0 1 0
0 0 −2ε3 1

 , M ε4
4 =


e−3ε4 0 0 0

0 e−ε4 0 0
0 0 e2ε4 0
0 0 0 1

 .

Now, one has the general adjoint transformation matrix M related to the (1+1)D-GeoKdVe
(6) with power-law nonlinearities as M (ε1, ε2, ε3, ε4) = M ε1

1 M ε2
2 M ε3

3 M ε4
4 and this leads to

M =


e−3ε4 e−ε4ε3 0 0

0 e−ε4 0 0
0 −e−ε4ε1 e2ε4 0

3e−3ε4ε1 e−ε4 (ε2 + 3ε1ε3) −2e2ε4ε3 1

 .

Meanwhile, we engage the method explicated in Hu et al. (2015); Olver (1993) and on
extending equation (13) to some function ∆i = ∆i(a1, . . . , a4, b1, . . . , b4), where b1, . . . , b4 are
some arbitrary constants (see Hu et al. (2015)), we calculate ∆1, . . . ,∆4, as ∆1 = 3a1b4 −
3a4b1,∆2 = a3b1 − a4b2 − a1b3 + a2b4,∆3 = 2a4b3 − 2a3b4,∆4 = 0. We obtain the values of
bi, i = 1, 2, 3, 4, using the relation: ∆1∂Ω/∂a1 +∆2∂Ω/∂a2 +∆3∂Ω/∂a3 +∆4∂Ω/∂a4 = 0, where
function Ω = Ω(a1, . . . , a4). Solving the obtained equation gives Ω(a1, . . . , a4) = G(a4). We
utilize the adjoint transformation equation M (a1, . . . , a4) = (q1, . . . , q4), where q1, . . . , q4 are
accordingly equivalent to the elements of the adjoint equations (Hu et al., 2015).

Therefore, after imploring the above given information and performing some calculations,
various optimal representatives were attained and combining these obtained representatives, we
have the theorem given below;

Theorem 3. An optimal system of one-dimensional subalgebras associated to the generalized
(1+1)D-GeoKdVe (6) is purveyed in the following operators: S1,S3,S4,S3+S1,S1−S3,S3+
c0S2 + S1, where c0 ∈ {−1, 1}.

2.3 Symmetry reductions and solutions of (6)

Utilizing the one-dimensional optimal system of subalgebras established in the preceding subsec-
tion, we will proceed with the symmetry reduction process to derive the exact group-invariant
solutions for equation (6) by first reducing the model to ordinary differential equation (ODE).

153



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.9, N.2, 2024

2.3.1 Symmetry reduction of (6) through subalgebra S1

The characteristic equations related to S1 are engendered as

dt

1
=
dx

0
=
du

0
, (14)

which yields two invariants J1 = x and J2 = u. Thus J2 = f(J1). Definitely

u = f(x). (15)

Invoking the above value of u in equation (6) gives

af ′(x) + bf(x)f ′(x) + cf ′′′(x) = 0.

2.3.2 Symmetry reduction of (6) through subalgebra S3

The Lagrangian system associated with S3 solves to give two invariants J1 = t and J2 = u−x/bt.
Thus J2 = f(J1), which gives the function u = f(t) + x/bt. One substitutes the value of u in
(6) and so it yields

btf ′(t) + bf(t) + a = 0. (16)

Solving the differential equation leads to

u(x, t) =
C0

t
t− a

b
,

where C0 is an integration constants.

2.3.3 Symmetry reduction of (6) through subalgebra S4

Now considering the third symmetry generated by the optimal system of one-dimensional sub-
algebras, one follows the usual process and achieve

ξ =
x
3
√
t
, and f(ξ) =

(
u+

a

b

)
t2/3,

which transforms (1+1)D-GeoKdVe (6) to third-order nonlinear ordinary differential equation
(NODE)

3bf(ξ)f ′(ξ)− ξf ′(ξ)− 2f(ξ) + 3cf ′′′(ξ) = 0. (17)

One can observe that (17) is difficult to integrate. Therefore, in order to gain analytic solution
to the nonlinear equation, we invoke the power series approach.

Analytic power series solution of (1+1)D-GeoKdVe (6)
The analytical power series solution of model (6) is attained in this subsection by invoking

power series technique (Adeyemo & Khalique, 2023). In a bid to put the aforementioned to
action, one seeks a series solution to solve NODE (17), in the structure

f (ξ) =

∞∑
m=0

cmξ
m (18)

in which constant parameters cm,m = 0, 1, 2, 3, 4, . . . ,∞, are required to be known. Meanwhile,
the demanded derivatives in (17) are explicated in this context as

f ′ (ξ) =
∞∑
m=0

mcmξ
m−1, f ′′ (ξ) =

∞∑
m=0

m(m− 1)cmξ
m−2,

f ′′′ (ξ) =

∞∑
m=0

m(m− 1)(m− 2)cmξ
m−3. (19)
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Adequate replacement of the associated terms in (17) with summation expressions enunciated
in (18) together with (19), establishes

360cc6ξ
3 + 180cc5ξ

2 + 72cc4ξ + 18cc3 + 3c
∞∑
m=4

(m+ 1)(m+ 2)(m+ 3)cm+3ξ
m

− 4c4ξ
4 − 3c3ξ

3 − 2c2ξ
2 − c1ξ −

∞∑
m=4

mcmξ
m + 12bc3c4ξ

6 + 9bc23ξ
5 + 12bc2c4ξ

5

+ 15bc2c3ξ
4 + 12bc1c4ξ

4 + 6bc22ξ
3 + 12bc1c3ξ

3 + 12bc0c4ξ
3 + 9bc1c2ξ

2 + 9bc0c3ξ
2

+ 3bc21ξ + 6bc0c2ξ + 3bc0c1 + 3b
∞∑
m=4

m∑
k=0

ckcm−k+1ξ
m − 2c3ξ

3 − 2c2ξ
2 − 2c1ξ

− 2c0 − 2
∞∑
m=4

cmξ
m = 0, (20)

from which for arbitrary c0, c1, and c2, one could obtain the results; viz

c3 =
c0
9c
− bc0c1

6c
; (21)

c4 =
c1

24c
− bc21

24c
− bc0c2

12c
; (22)

c5 =
b2c1c

2
0

120c2
− bc20

180c2
− bc1c2

20c
+

c2
45c

; (23)

c6 =
b2c2c

2
0

360c2
+
b2c21c0
144c2

− bc1c0
135c2

− bc22
60c

+
c0

648c2
. (24)

Besides, in general, for m ≥ 4, one achieves the recurrence relation purveyed as

cm+3 =
1

3c(m+ 1)(m+ 2)(m+ 3)

{
2cm − 3b

m∑
k=0

ckcm−k+1 +mcm

}
. (25)

Applying the recursion formula (25), successive terms cm,m = 7, . . . ,∞, could also be de-
cided in a unique way. Thus, power series solution to (17) can be written as

f (ξ) = c0 + c1ξ + c2ξ
2 +

(
c0
9c
− bc0c1

6c

)
ξ3 +

(
c1

24c
− bc21

24c
− bc0c2

12c

)
ξ4

+

(
b2c1c

2
0

120c2
− bc20

180c2
− bc1c2

20c
+

c2
45c

)
ξ5

+

(
b2c2c

2
0

360c2
+
b2c21c0
144c2

− bc1c0
135c2

− bc22
60c

+
c0

648c2

)
ξ6 +

∞∑
m=3

cm+3ξ
m+3, (26)

Hence, the analytic power series solution to (1+1)D-GeoKdVe (6), explicates as

u (x, t) =
1

3
√
t2

{
c0 + c1

(
x
3
√
t

)
+ c2

(
x
3
√
t

)2

+

(
c0
9c
− bc0c1

6c

)(
x
3
√
t

)3

+

(
c1

24c

− bc21
24c
− bc0c2

12c

)(
x
3
√
t

)4

+

(
b2c1c

2
0

120c2
− bc20

180c2
− bc1c2

20c
+

c2
45c

)(
x
3
√
t

)5

+

(
b2c2c

2
0

360c2
+
b2c21c0
144c2

− bc1c0
135c2

− bc22
60c

+
c0

648c2

)(
x
3
√
t

)6

(27)

+
1

3c

∞∑
m=3

m!

(m− 3)!

{
2cm − 3b

m∑
k=0

ckcm−k+1 +mcm

}(
x
3
√
t

)m+3
}
− a

b
.

which is the result attained by reverting to the original variables in t, x and u.
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2.3.4 Symmetry reduction of (6) through subalgebra S1 + S3

The next member of the optimal system of one-dimensional subalgebras S1 + S3 purveys the
invariant and the associated group invariant respectively given as

ξ = x− 1

2
bt2, and f(ξ) = u− t.

Utilizing the above, one successfully transforms (6) to the NODE

af ′(ξ) + bf(ξ)f ′(ξ) + cf ′′′(ξ) + 1 = 0. (28)

2.3.5 Symmetry reduction of (6) through subalgebra S1 −S3

Now we focus on S1 −S3, adopting the usual Lie theoretic approach, we gain

ξ =
1

2
bt2 + x, with f(ξ) = u+ t.

The function further reduces (1+1)D-GeoKdVe (6) to the ODE

af ′(ξ) + bf(ξ)f ′(ξ) + cf ′′′(ξ)− 1 = 0. (29)

2.3.6 Symmetry reduction of (6) through subalgebra S3 + c0S2 + S1

In seeking further to reduce (6), symmetry operator S3 + c0S2 + S1 with c0 6= 0 is engaged.
Thus we achieve the invariant

ξ = x− c0t−
1

2
bt2, where f(ξ) = u− t.

Eventually, application of the obtained expression of u in (6) furnishes NODE

af ′(ξ)− c0f ′(ξ) + bf(ξ)f ′(ξ) + cf ′′′(ξ) + 1 = 0. (30)

Remark 1. We observe that combinations of S1 and S3 are a special case of S3 + c0S2 +S1,
so we now seek the exact power series solution of the NODE under the latter and set aside that
of the former.

Acting on Remark 1, we seek to find the exact power series solution of NODE (30) based
on the procedure earlier explicated. Therefore substituting series derivative (19) into (30) gives
the equation presented in this regard as

4ac4ξ
3 + 3ac3ξ

2 + 2ac2ξ + ac1 − 4c0c4ξ
3 − 3c0c3ξ

2 − 2c0c2ξ − c0c1 + (a− c0)

×
∞∑
m=4

(m+ 1)cm+1ξ
m + 4bc3c4ξ

6 + 3bc23ξ
5 + 4bc2c4ξ

5 + 5bc2c3ξ
4 + 4bc1c4ξ

4

+ 2bc22ξ
3 + 4bc1c3ξ

3 + 4bc0c4ξ
3 + 3bc1c2ξ

2 + 3bc0c3ξ
2 + bc21ξ + 2bc0c2ξ

+ bc0c1 + b

∞∑
m=4

m∑
j=0

cjcm−j+1ξ
m + 120cc6ξ

3 + 60cc5ξ
2 + 24cc4ξ + 6cc3

+ c
∞∑
m=4

(m+ 1)(m+ 2)(m+ 3)cm+3ξ
m = 0. (31)

In general, for m ≥ 4, one achieves the recurrence relation purveyed as

cm+3 = − 1

c(m+ 1)(m+ 2)(m+ 3)

{
(a− c0)(m+ 1)cm+1 + b

m∑
j=0

cjcm−j+1

}
. (32)
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In addition, for arbitrary c0, c1, and c2, one could secure the values of c3, . . . , c6 as

c3 =
c0c1
6c
− ac1

6c
− bc0c1

6c
− 1

6c
; (33)

c4 =
c0c2
12c
− ac2

12c
− bc21

24c
− bc0c2

12c
; (34)

c5 =
a2c1
120c2

+
abc0c1
60c2

− ac0c1
60c2

+
a

120c2
+
b2c20c1
120c2

+
bc0

120c2
− bc20c1

60c2

− bc1c2
20c

− c0
120c2

+
c20c1

120c2
; (35)

c6 =
a2c2
360c2

+
abc21
144c2

+
abc0c2
180c2

− ac0c2
180c2

+
b2c0c

2
1

144c2
+
b2c20c2
360c2

− bc0c
2
1

144c2

+
bc1

180c2
− bc20c2

180c2
− bc22

60c
+

c20c2
360c2

. (36)

Utilizing (33)–(36), power series solution to (30) can be expressed as

f (ξ) = c0 + c1ξ + c2ξ
2 +

(
c0c1
6c
− ac1

6c
− bc0c1

6c
− 1

6c

)
ξ3 +

(
c0c2
12c
− ac2

12c
− bc21

24c

− bc0c2
12c

)
ξ4 +

(
a2c1
120c2

+
abc0c1
60c2

− ac0c1
60c2

+
a

120c2
+
b2c20c1
120c2

+
bc0

120c2
− bc20c1

60c2

− bc1c2
20c

− c0
120c2

+
c20c1

120c2

)
ξ5 +

(
a2c2
360c2

+
abc21
144c2

+
abc0c2
180c2

− ac0c2
180c2

+
b2c0c

2
1

144c2
+
b2c20c2
360c2

− bc0c
2
1

144c2
+

bc1
180c2

− bc20c2
180c2

− bc22
60c

+
c20c2

360c2

)
ξ6

+
∞∑
m=4

cm+3ξ
m+3. (37)

Consequently, the analytic power series solution to (1+1)D-GeoKdVe (6), gives

u (x, t) =

{
c0 + c1

[
x− c0t−

1

2
bt2
]

+ c2

[
x− c0t−

1

2
bt2
]2

+

(
c0c1
6c
− ac1

6c
− bc0c1

6c

− 1

6c

)[
x− c0t−

1

2
bt2
]3

+

(
c0c2
12c
− ac2

12c
− bc21

24c
− bc0c2

12c

)[
x− c0t−

1

2
bt2
]4

+

(
a2c1
120c2

+
abc0c1
60c2

− ac0c1
60c2

+
a

120c2
+
b2c20c1
120c2

+
bc0

120c2
− bc20c1

60c2
− bc1c2

20c

− c0
120c2

+
c20c1

120c2

)[
x− c0t−

1

2
bt2
]5

+

(
a2c2
360c2

+
abc21
144c2

+
abc0c2
180c2

− ac0c2
180c2

+
b2c0c

2
1

144c2
+
b2c20c2
360c2

− bc0c
2
1

144c2
+

bc1
180c2

− bc20c2
180c2

− bc22
60c

+
c20c2

360c2

)
×
[
x− c0t−

1

2
bt2
]6

+
1

c

∞∑
m=4

m!

(m− 3)!

{
(a− c0)(m+ 1)cm+1

+ b
m∑
j=0

cjcm−j+1

}[
x− c0t−

1

2
bt2
]m+3

}
+ t.

Next, we examine the combinations of S1,S2,S3,S4 in reducing (6) which will give a more
robust invariant solution. This will be referred to as subalgebra S1 + S2 + S3 + S4.
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2.3.7 Symmetry reduction of (6) through subalgebra S1 + S2 + S3 + S4

Finally, in our quest to look for more solutions of (1+1)D-GeoKdVe (6), we consider the sym-
metry operator S1 + S2 + S3 + S4. Taking the usual steps, one attains the invariants

ξ = − bt− 2bx− 1

2b 3
√

(3bt+ 1)
, whereas f(ξ) = −

(
1

2b
− a

b
− u
)

3

√
(3bt+ 1)2.

In engaging the achieved expression of u in (6), NODE furnished is

bf(ξ)f ′(ξ)− 2bf(ξ) + cf ′′′(ξ)− bξf ′(ξ) = 0. (38)

In reference to what has been earlier invoked, one solves NODE (38) using power series
method and by following the same step as earlier outlined, one achieves the analytic power
series solution to (1+1)D-GeoKdVe (6) as

u (x, t) =
1

3

√
(3bt+ 1)2

{
c0 + c1

(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)
+ c2

(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)2

+

(
bc0
3c
− bc0c1

6c

)(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)3

+

(
bc1
8c
− bc21

24c
− bc0c2

12c

)

×

(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)4

+

(
b2c1c

2
0

120c2
− b2c20

60c2
− bc1c2

20c
+
bc2
15c

)

×

(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)5

+

(
b2c0c

2
1

144c2
+
b2c0
72c2

− b2c0c1
45c2

+
b2c20c2
360c2

− bc22
60c

)(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)6

+
1

3

∞∑
m=3

m!

(m− 3)!

{
2cm − b

m∑
k=0

ckcm−k+1

+ bmcm

}(
− bt− 2bx− 1

2b 3
√

(3bt+ 1)

)m+3}
+

1

2b
− a

b
. (39)

Remark 2. It is worthy of note that, the analytic power series approach just rendered in solving
NODE (17), (30) and (38) can be utilized in entrenching exact solution. Having demonstrated
the efficiency of the technique in this regard by applying it to retrieve solution to the most difficult
NODE found in this work, one establishes the aforementioned. Therefore, in addendum, one
could employ the approach in attaining exact series solutions to any of the other NODE here
and as such to any NODE of any nature and number of terms (linear and nonlinear).

2.4 Travelling wave solutions of (1+1)D-GeoKdVe (6)

Suppose one takes into account a linear combination of two members of the four-dimensional
Lie algebra computed for (1+1)D-GeoKdVe (6) earlier as S = S1 + νS2. The symmetry S
produces two invariants entrenched as

ξ = x− νt and U = u,

which yield the group-invariant solution U = U(ξ) with ξ as the new independent variable.
Utilizing the above, one successfully transforms equation (6) to the third-order NODE

aU ′(ξ) + bU(ξ)U ′(ξ) + cU ′′′ − νU ′(ξ) = 0. (40)
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We first apply the direct integration approach to the NODE (40) to attain some solutions of
(1+1)D-GeoKdVe (6). Thereafter, a standard technique will be invoked to secure more general
solutions.

Solutions of (6) through direct integration approach
Using the direct integration approach, two cases are going to be looked into with a view

to attaining two types of solutions to (6) and these solutions are periodic and bright soliton.
Integration of (40) with reference to independent variable ξ gives

U ′′(ξ) +
b

2c
U(ξ)2 − αU(ξ) +K1 = 0, (41)

where α = (ν − a) /c, K1 = K0/c, with K0 6= 0, an integration constant.

Case 1: Weierstrass function solution

One can integrate NODE (41) (whereby K0 6= 0), easily by multiplying it by U ′(ξ) first.
Therefore one gets

U ′(ξ)2 +
b

3c
U(ξ)3 − αU(ξ)2 + 2K1U(ξ) + 2K2 = 0, (42)

where K2 is an integration constant. One retrieves a periodic solution to NODE (40) in terms
of Weierstrass function (Kudryashov (2019)) by setting a transformation as

U(ξ) =
c

b
{α− 12℘(ξ)} . (43)

Hence, one reckons (42) as NODE with Weierstrass elliptic function (Gradshteyn & Ryzhik
(2007); Akhiezer (1990))

℘′(ξ)2 − 4℘(ξ)3 + g1℘(ξ) + g2 = 0 (44)

with the included Weierstrass elliptic invariants g1 as well as g2 expressed as

g1 =
1

b

{
24K0 −

12(ν − a)2

b

}
, g2 =

1

b

{
24K2c+

24K0(ν − a)

b
− 8(ν − a)3

b2

}
.

Hence, the solution to differential equation (42) produces in this regard

U(ξ) =
1

b
(ν − a) + ℘

(
1

2
√

3

√∣∣∣∣− b

c

∣∣∣∣ξ; 24K0

b
− 12(ν − a)2

b2
,
24cK2

b

−8(ν − a)3

b3
+

24K0(ν − a)

b2

)
. (45)

Bearing in mind (43) alongside (44) and reverting to previous variables, one has

u(x, t) =
1

b
(ν − a) + ℘

(
1

2
√

3

√∣∣∣∣− b

c

∣∣∣∣(x− νt); 24K0

b
− 12(ν − a)2

b2
,
24cK2

b

−8(ν − a)3

b3
+

24K0(ν − a)

b2

)
, (46)

where ℘ represents Weierstrass function (Gradshteyn & Ryzhik (2007)). The wave dynamics of
the Weierstrass solution (46) is plotted in Figure 1.
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Figure 1: The singular periodic shape wave structure of Weierstrass solution (46) is plotted using
the dissimilar constant values a = 0.1, b = 0.1, c = 1, ν = 10, K0 = 8, K2 = 10, in the interval

−10 ≤ t, x ≤ 10. The singular points are prevalent within the interval of the solution.

Case 2: Bright soliton solution
Here, one contemplates another case of NODE (41) whereby K0 = 0. Thus, taking this and

integrating the result as earlier demonstrated gives

a− ν
2

U(ξ)2 +
b

6
U(ξ)3 +

c

2
U ′(ξ)2 = C0, (47)

where C0 is an integration constant. On letting C0 = 0, in the first-order NODE (47), and
solving the equation furnishes the soliton solution of model (6) as

u(x, t) =
1

b
{3(a− ν)} sech2

{
−1

2

(
C1

√
3 (a− ν) +

√
(ν − a)

c
[x− νt]

)}
, (48)

where C1 is an integration constant. The wave structure of the bright soliton solution (48) is
the plots explicated in Figure 2.

Figure 2: Bell-shaped wave structure of hyperbolic secant function solution (48) using the data
values a = 0.5, b = 0.1, c = −0.5, ν = 0, and C1 = 0 in the interval −10 ≤ t, x ≤ 10.

Next, in order that one might secure various more interesting exact general solutions to
(1+1)D-GeoKdVe (6) using the extended Jacobi elliptic function expansion approach.

Solutions of (6) using extended Jacobi elliptic function expansion ap-
proach

Here, we utilize the extended Jacobi elliptic function expansion technique Khalique & Adeyemo
(2020a) to secure various exact general solitons and travelling wave solutions of (6). Suppose
the third-order NODE (40) owns a solution of the structure

U(ξ) =
m∑

i=−m
AiR(ξ)i, (49)
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where we aim to obtain the value of positive integer m by adopting balancing procedure, see
(Zhou et al. (1996)). In this regard, solving NODE (40), the expected elliptic equation to be
invoked are

R′(ξ) +
√
{(1−R2(ξ))(1− ω + ωR2(ξ))} = 0, (50)

R′(ξ)−
√
{(1−R2(ξ))(1− ωR2(ξ))} = 0, (51)

R′(ξ) +
√
{(1−R2(ξ))(ω − 1 +R2(ξ))} = 0, (52)

whose solutions are expressed accordingly with regards to the Jacobi elliptic cosine, sine as well
as delta amplitude functions, respectively, as

R(ξ) = cn(ξ|ω), R(ξ) = sn(ξ|ω), and R(ξ) = dn(ξ|ω). (53)

Therefore, one contemplates the subsequent solitary wave solution directions.

Cnoidal wave solutions

Here, contemplating the NODE (40), the balancing procedure produces m = 2 and then (49)
assumes structure

U(ξ) = A−2R(ξ)−2 +A−1R(ξ)−1 +A0 +A1R(ξ) +A2R(ξ)2. (54)

Substituting the value of U(ξ) from (54) into (40) in conjunction with (50), we secure an alge-
braic equation, which splits over various powers of R(ξ) and yields a system of eleven algebraic
equations:

bω A2
2 − 12 cω2A2 = 0,

bω A1A2 − 2 cω2A1 = 0,

24 cω2A−2 − 2 bω A2
−2 + 2 bA2

−2 − 48 cω A−2 + 24 cA−2 = 0,

6 cω2A−1 − 3 bω A−2A−1 + 3 bA−2A−1 − 12 cω A−1 + 6 cA−1 = 0,

2 bω A0A2 + bω A2
1 − 4 bω A2

2 + 64 cω2A2 + 2 aω A2 + 2 bA2
2 − 32 cω A2

− 2 ν ω A2 = 0,

bω A−1A2 + bω A0A1 − 6 bω A1A2 + 14 cω2A1 + aω A1 + 3 bA1A2 − 7 cω A1

− ν ω A1 = 0,

− 2 bω A2
−2 + 4 bω A−2A0 + 2 bω A2

−1 + 56 cω2A−2 + 4 aω A−2 − 2 bA−2A0

− bA2
−1 − 56 cω A−2 − 4 ν ω A−2 − 2 aA−2 + 8 cA−2 + 2 ν A−2 = 0,

4 bω A2
−2 − 2 bω A−2A0 − bω A2

−1 − 64 cω2A−2 − 2 aω A−2 − 2 bA2
−2 + 2 bA−2A0

+ bA2
−1 + 96 cω A−2 + 2 ν ω A−2 + 2 aA−2 − 32 cA−2 − 2 ν A−2 = 0,

− 4 bω A0A2 − 2 bω A2
1 + 2 bω A2

2 − 56 cω2A2 − 4 aω A2 + 2 bA0A2 + bA1
2

− 2 bA2
2 + 56 cω A2 + 4 ν ω A2 + 2 aA2 − 8 cA2 − 2 ν A2 = 0,
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6 bω A−2A−1 − bω A−2A1 − bω A−1A0 − 14 cω2A−1 − aω A−1 − 3 bA−2A−1

+ bA−2A1 + bA−1A0 + 21 cω A−1 + ν ω A−1 + aA−1 − 7 cA−1 − ν A−1 = 0,

2 bω A0A2 − 2 bω A−2A0 − bω A2
−1 + bω A2

1 − 16 cω2A−2 + 16 cω2A2 − 2 aω A−2

+ 2 aω A2 − 2 bA0A2 − bA2
1 + 8 cω A−2 − 24 cω A2 + 2 ν ω A−2 − 2 ν ω A2

− 2 aA2 + 8 cA2 + 2 ν A2 = 0,

3 bω A1A2 − bω A−2A1 − bω A−1A0 − 2 bω A−1A2 − 2 bω A0A1 − 2 cω2A−1

− 10 cω2A1 − aω A−1 − 2 aω A1 + bA−1A2 + bA0A1 − 3 bA1A2 + cω A−1

+ 10 cω A1 + ν ω A−1 + 2 ν ω A1 + aA1 − cA1 − ν A1 = 0,

2 bω A−1A0 − 3 bω A−2A−1 + 2 bω A−2A1 + bω A−1A2 + bω A0A1

+ 10 cω2A−1 + 2 cω2A1 + 2 aω A−1 + aω A1 − bA−2A1 − bA−1A0 − bA−1A2

− bA0A1 − 10 cω A−1 − 3 cω A1 − 2 ν ω A−1 − ν ω A1 − aA−1 − aA1

+ cA−1 + cA1 + ν A−1 + ν A1 = 0.

Employing a computer software package to solve the above system of equations gives

A−2 =
12c (ω − 1)

b
, A−1 = 0, A0 = −1

b
(8cω + a− 4c− ν) , A1 = 0, A2 =

12cω

b
. (55)

Thus, we gain the solution of (6) related to (55) as

u(x, t) =
1

b

{
12c (ω − 1) nc2(ξ|ω)− (8cω + a− 4c− ν) + 12cω cn2(ξ|ω)

}
(56)

with ξ = x− νt. We reveal the streaming pattern of periodic solution (56) with Figure 3.

Figure 3: The periodic singular wave structure of cnoidal solution (56) at a = 5, b = 0.40, c = −0.1,
ν = 0.4, ω = 0.8, in the interval −10 ≤ t, x ≤ 10. The singular points in the solution is embedded

within −10 ≤ t, x ≤ 10.

Snoidal wave solutions
As shown earlier, the balancing procedure yields m = 2 and so the assumed solution (49)

gives the same expression as (54). Following the same procedure as in the previous section but
invoking (51), we obtain the values of Ai, i = −2, . . . , 2, as

A−2 = −12c

b
, A−1 = 0, A0 = −1

b
(a− 4cω − 4c− ν) , A1 = A2 = 0. (57)

Hence the solution of (6) related to (57) is

u(x, t) =
1

b

{
−12cns2

(
x− νt

∣∣∣ω)+ 4c (ω + 1)− a+ ν
}
. (58)

The dynamics of solution (58) is portrayed in Figure 4.
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Figure 4: The periodic wave structures of snoidal wave solution 58) with singular points at −10 ≤
t, x ≤ 10 are plotted using the dissimilar values a = 5, b = 0.40, c = −0.1, ν = 0.8, ω = 0.2, in the

interval −10 ≤ t, x ≤ 10.

Dnoidal wave solutions

In the same vein, the balancing procedure yields similar value of m as earlier found and so
the assumed solution (49) gives the same expression as (54). Following the same steps as in the
previous section but using (52), gives values of A−2, . . . , A2 as

A−2 = 0, A−1 = 0, A0 = −1

b
(a− 4cω + 8c− ν) , A1 = 0 A2 =

12c

b
. (59)

Hence, the solution of (6) corresponding to (59) is

u(x, t) =
1

b

{
ν + 4cω − a− 8c + 12cdn2

(
x− νt

∣∣∣ω)} . (60)

The dynamics of solution (60) is depicted in Figure 5.

Figure 5: The smooth periodic wave structures of dnoidal wave solution 60) are plotted via the
dissimilar constant values a = 2, b = 0.8, c = −1, ν = 0.8, ω = 0.5, in the interval −10 ≤ t, x ≤ 10.

3 Conservation laws of (1+1)D-GeoKdVe (6)

This segment supplies the conserved vectors of the fundamental equation by applying Ibragi-
mov’s theorem on preserved vectors, as referenced in prior works Ibragimov (2007); Khalique &
Adeyemo (2020b). This is accomplished by utilizing the optimal system of Lie subalgebras.

3.1 Lagrangian and conserved vectors

Consider a system of sth-order α PDEs (Ibragimov, 2007)

Ξσ(x,Θ,Θ(1), . . . , Θ(s)) = 0, σ = 1, . . . , α, (61)
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with κ independent together with α dependent variables given as x = (x1, x2, . . . , xκ) and
Θ = (Θ1, Θ2, . . . , Θα). The system of adjoint equations are given by

Ξ∗σ(x,Θ,Ω, . . . , Θ(s),Ω(s)) ≡
δ(ΩβΞβ)

δΘσ
= 0, σ = 1, . . . , α, (62)

where Ω = (Ω1, . . . ,Ωα) are new dependent variables, Ω = Ω(x). The operator δ/δΘσ, expressed
for each σ, as

δ

δΘσ
=

∂

∂Θσ
+

∞∑
s=1

(−1)sDi1 . . . Dis

δ

δΘσi1,i2,...,is
, i = 1, . . . , κ, (63)

is the Euler-Lagrange operator and

Di =
∂

∂xi
+Θσi

∂

∂Θσ
+Θσij

∂

∂Θσj
+ · · · , i = 1, . . . , κ, j = 1, . . . , κ (64)

is the total differential operator.
Noether’s theorem (Noether (1918)) states that suppose the variational integral with the
Lagrangian L(x,Θ,Θ(1)) is invariant under a group G with a generator defined as

W = ξi
(
x,Θ,Θ(1), ...

) ∂

∂xi
+ ηα

(
x,Θ,Θ(1), ...

) ∂

∂Θα
, (65)

then the vector field T = (T 1, . . . , Tn) defined by (Sarlet (2010))

T k =Lτk + (ξα −Θαxjτ
j)

{
∂L
∂Θα

xk
−

k∑
l=1

Dxl

( ∂L
∂Θα

xlxk

)}

+

n∑
l=k

(ηαl −Θαxlxjτ
j)

∂L
∂Θα

xkxl
−Bk,

(66)

gives a conservation law for the Euler-Lagrange equations (63), that is, obeys the equation
divT ≡ Dk(T

k) = 0 for all solutions of system (61).
The derivatives of Θ with respect to x are defined as

Θαi = Di(Θ
α), Θαij = DjDi(Θi), . . . , (67)

where

Di =
∂

∂xi
+Θαi

∂

∂Θα
+Θαij

∂

∂Θαj
+ · · · , i = 1, ..., n (68)

is known as the operator of total differentiation. All the first derivatives Θαi collected together
is denoted by Θ(1), i.e.,

Θ(1) = {Θαi } α = 1, ...,m, i = 1, ..., n.

In the same vein

Θ(2) = {Θαij} α = 1, ...,m, i, j = 1, ..., n

and Θ(3) = {Θαijk} likewise Θ(4) etc. Since Θαij = Θαji, Θ(2) contains only Θαij for i ≤ j.
An n-tuple T = (T 1, T 2, . . . , Tn), 1 = 1, 2, . . . , n, such that

DiT
i = 0, (69)

holds for all solutions of (61) is referred to as the conserved current of the equation.
The formal Lagrangian of the system (61) and its adjoint (62) is given as

L = ΩσΞσ
(
x,Θ,Θ(1), . . . , Θ(s)

)
. (70)
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Theorem 4. Every nonlocal symmetry, Lie-Bäcklund, as well as Lie point symmetry,

R = ξi
∂

∂xi
+ ϕσ

∂

∂Θσ
, ξi = ξi(x,Θ), ϕσ = ϕσ(x,Θ), (71)

admitted by the system (61) produces a conserved vector for equations (61) and its adjoint (62),
with the conserved vectors T = (T 1, . . . , T κ) having components T i given by

T i = ξiL+ Πσ

[
∂L
∂Θσi

−Dj
∂L
∂Θσij

+DjDk

(
∂L
∂Θσijk

)
+ · · ·

]
+Dj(Π

σ)

[
∂L
∂Θσij

−Dk
∂L
∂Θσijk

+ · · ·

]
+DjDk(Π

σ)
∂L
∂Θijk

+ · · · , i, j, k = 1, . . . , κ (72)

with Lie characteristic function Πσ explicated by

Πσ = ϕσ − ξjΘσj , σ = 1, . . . , α, j = 1, . . . , κ. (73)

The multiplier Λ of system (61) has the property that

DiT
i = ΛσΞσ, σ = 1, . . . , α. (74)

The governing equations for all multipliers involved are obtained from

δ

δΘσ
(ΛσΞσ) = 0, σ = 1, . . . , α. (75)

The moment the multipliers are generated via (75), the conserved currents can be procured
using (74) as the determining equation. Now, we proceed to compute the symmetries of (6)
with a view to utilizing them to calculate the conserved vectors via Theorem 4 with formula
(72).

3.2 Conservation laws of (6) using Noether’s theorem

In this subsection we derive the conservation laws for the modified equal-width equation (6)
using the Noether theorem. This equation as it is, does not have a Lagrangian. In order to
apply Noether’s theorem we transform equation (6) into a fourth-order equation which has a
Lagrangian. Thus using the transformation u = wx, equation (6) becomes

wtx + awxx + bwxwxx + cwxxxx = 0. (76)

It can readily be verified that the second-order Lagrangian for equation (76) is given by

L = −1

2
wxwt −

1

2
aw2

x −
1

6
bw3

x +
1

2
cw2

xx (77)

because δL/δw = 0 on (76). Here δ/δw is the Euler-Lagrange operator defined as

δL
δw

=
∂

∂w
−Dt

∂

∂wt
−Dx

∂

∂wx
+D2

t

∂

∂wtt
+D2

x

∂

∂wxx
+DtDx

∂

∂wtx
− · · · , (78)

where the total derivatives Dt, Dx are as defined by (68) Consider the vector field

W = ξ1(t, x, w)
∂

∂t
+ ξ2(t, x, w)

∂

∂x
+ η(t, x, w)

∂

∂w
, (79)

where ξ1, ξ2 and η depend on t, x and w. To determine the Noether symmetries W of (76) we
insert the value of L from (77) in

W [2](L) + L[Dt(ξ
1) +Dx(ξ2)] = Dt(B

t) +Dx(Bx), (80)
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where Bt = Bt(t, x, w) and Bx = Bx(t, x, w) are the gauge terms and W [2] is the second
prolongation of W defined as

W [2] =W + ζt
∂

∂wt
+ ζx

∂

∂wx
+ ζtt

∂

∂wtt
+ ζxx

∂

∂wxx
+ ζtx

∂

∂wtx
(81)

with ζt and ζx defined in this regard as (10)

Equation (80) becomes

−wx
2
ζt −

wt
2
ζx − awxζx −

1

2
bw2

xζx + cwxxζxx = Bt
t +Bx

x + wtB
t
u + wxB

x
u. (82)

Expansion of the above equation gives fourteen system of differential equations:

ηxx = 0, ξ1w = 0, ξ1x = 0, ξ2w = 0, ξ1x − ηw = 0, ηww − 2ξ2xw = 0,

2ηxw − ξ2xx = 0, ηx + 2Bt
w = 0, Bt

w +Bx
x = 0, bξ1x + aξ1w + ξ2w = 0,

2ηw − 3ξ2x + ξ1t = 0, ηt + 2aηx + 2Bx
w = 0, 2bξ2x − 3bηw + 3aξ2w − bξ1t = 0,

aξ2x − 2aηw − bηx − aξ1t + ξ2t = 0. (83)

Solving the system therefore leads to the solution presented as

ξ1(t, x, w) =A1, ξ
2(t, x, w) = A2t+A3, η(t, x, w) =

1

b
A2x+ f(t),

Bt(t, x, w) = − 1

2
A2w + g(t, x), Bx(t, x, w) = Q(t)− 1

2
f ′(t)w − aA2w + e(t),

whereQ(t) = −
∫
gt(t, x)dx, while A1, A2 and A3 are arbitrary constants. Additionally, functions

f(t), g(t, x) as well as e(t) are arbitrary. One takes note that one can choose g(t, x) = e(t) = 0,
as they contribute to the trivial part of the conserved vector, thus satisfying (83). Thus, one
attains the following Noether point symmetries as well as their corresponding gauge functions:

W1 =
∂

∂t
, Bt = 0, Bx = 0,

W2 =
∂

∂x
, Bt = 0, Bx = 0,

W3 = bt
∂

∂x
+ x

∂

∂w
, Bt = −1

2
w, Bx = −aw,

Wf = f(t)
∂

∂w
, Bt = 0, Bx = −1

2
f ′(t)w.

Next, we use the above results to compute the conserved vectors of the fourth-order equation
(76). Invoking the formulae for the conserved vector (T t, T x) expressed in (66), one could attain
the four conserved vectors associated with the calculated Noether symmetries W1, W2, W3 and
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Wf respectively as

T t1 =
1

2
cw2

xx −
1

2
aw2

x −
1

6
bw3

x,

T x1 = awtwx +
1

2
bwtw

2
x + cwtwxxx − cwxxwtx +

w2
t

2
;

T t2 =
w2
x

2
,

T x2 =
1

2
aw2

x +
1

3
bw3

x + cwxxxwx −
1

2
cw2

xx;

T t3 =
1

2
btw2

x +
1

2
w − 1

2
xwx,

T x3 = aw +
1

2
abtw2

x +
1

3
b2tw3

x + bctwxxxwx −
1

2
bctw2

xx −
1

2
xwt

− axwx −
1

2
bxw2

x − cxwxxx + cwxx;

T tf = − 1

2
f(t)wx,

T xf = − af(t)wx −
1

2
bf(t)w2

x − cf(t)wxxx −
1

2
f(t)wt +

1

2
f ′(t)w.

Reverting to the original variables we obtain one local and three non-local conserved vectors of
(6) given by

Ct1 =
1

2
cu2x −

1

2
au2 − 1

6
bu3,

Cx1 = au

∫
utdx+

1

2
bu2

∫
utdx+ cuxx

∫
utdx− cutux +

1

2

(∫
utdx

)2

;

Ct2 =
1

2
u2,

Cx2 =
1

2
au2 +

1

3
bu3 + cuxxu−

1

2
cu2x;

Ct3 =
1

2
btu2 +

1

2

∫
udx− 1

2
xu,

Cx3 = a

∫
udx+

1

2
abtu2 +

1

3
b2tu3 + bctuxxu−

1

2
bctu2x −

1

2
x

∫
utdx

− axu− 1

2
bxu2 − cxuxx + cux;

Ctf = − 1

2
f(t)u,

Cxf = − af(t)u− 1

2
bf(t)u2 − cf(t)uxx −

1

2
f(t)

∫
utdx+

1

2
f ′(t)

∫
utdx.

Remark: It should be noted that due to the presence of arbitrary function f(t) we have infinitely
many nonlocal conservation laws.

3.3 Conserved vectors of (6) via Ibragimov’s theorem

Ibragimov’s theorem asserts that each conserved quantity in a differential equation is uniquely
related to a Lie point symmetry. Therefore, we utilize the elements of the optimal system of
Lie subalgebra from section 2 to generate new conserved currents using Ibragimov’s theorem
(Ibragimov (2007)). Thus, we give a theorem
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Theorem 5. Given the Euler operator δ/δu, the adjoint equation of (1+1)D-GeoKdVe (6) can
be expressed through the relation (Ibragimov (2007))

H∗ ≡ δ

δu
[v (ut + aux + buux + cuxxx)] = 0. (84)

Further expansion of (84) secures

H∗ ≡ vt + (a+ bu)vx + cvxxx = 0. (85)

The formal Lagrangian of (1+1)D-GeoKdVe (6) together with its adjoint presented in (85) is
expressed in the format

L = v (ut + aux + buux + cuxxx) . (86)

Therefore, the conserved vectors (T i, Xi), i = 1, 2, . . . , 6 are formulated for the Lagrangian (L)
by employing the appropriate structure of (72) applicable here, purveyed as (Ibragimov (2007))

T = ξ1L+Wα

[
∂L
∂uαi

−Dj
∂L
∂uαij

+DjDk

(
∂L
∂uαijk

)
+ · · ·

]

+Dj(W
α)

[
∂L
∂uαij

−Dk
∂L
∂uαijk

+ · · ·

]
+DjDk(W

α)
∂L
∂uijk

+ · · · , (87)

X = ξ2L+Wα

[
∂L
∂uαi

−Dj
∂L
∂uαij

+DjDk

(
∂L
∂uαijk

)
+ · · ·

]

+Dj(W
α)

[
∂L
∂uαij

−Dk
∂L
∂uαijk

+ · · ·

]
+DjDk(W

α)
∂L
∂uijk

+ · · · (88)

with constant α = 1, 2 as well as j = 1, 2, 3, 4. Wα = Ψα−ξjuαj is the involved Lie characteristic
function.

Now, on contemplating the Lie subalgbras previously utilized in the reduction process, one
computes the conserved vectors associated to them. Thus, by using the data found in the cited-
references, as demonstrated by (Khalique & Adeyemo (2020b); Ibragimov (2007)), one secures

T 1 = auxv + buxuv + cuxxxv,

X1 = cvxutx − autv − butuv − cvutxx − cutvxx;

T 2 = v − btuxv,
X2 = btutv + av + buv + bctuxxvx − bctuxvxx + cvxx;
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T 3 = 3abtuxv + 3b2tuxuv + 3bctuxxxv − bxuxv − 2av − 2buv,

X3 = − 3abtutv − 3b2tutuv − 4bcuxxv − 2bcvxxu− 3bctvutxx + bxutv

− 2a2v − 4abuv − 2b2u2v − 2acvxx − 3bctutvxx + 3bctvxutx + 3bcuxvx

+ bcxuxxvx − bcxuxvxx;

T 4 = auxv − btuxv + buxuv + cuxxxv + v,

X4 = buv − autv + btutv − butuv − cvutxx + av + bctuxxvx − bctuxvxx
− cutvxx + cvxutx + cvxx;

T 5 = auxv + btuxv + buxuv + cuxxxv − v,
X5 = bctuxvxx − autv − btutv − butuv − cvutxx − av − buv − bctuxxvx

− cutvxx + cvxutx − cvxx;

T 6 = auxv − btuxv + buxuv − c0uxv + cuxxxv + v,

X6 = btutv − autv − butuv + c0utv − cvutxx + av + buv + bctuxxvx − bctuxvxx
− cutvxx + cvxutx + cc0uxxvx − cc0uxvxx + cvxx;

T 7 = 3abtuxv + auxv + 3b2tuxuv + 3bctuxxxv − btuxv − bxuxv
+ buxuv + cuxxxv − uxv − 2av − 2buv + v,

X7 = btutv − 3abtutv − autv − 3b2tutuv − 4bcuxxv − 2bcvxxu− 3bctvutxx

+ bxutv − butuv − cvutxx + utv − 2a2v − 4abuv + av − 2b2u2v + buv

− 2acvxx + bctuxxvx − bctuxvxx − 3bctutvxx + 3bctvxutx + 3bcuxvx

+ bcxuxxvx − bcxuxvxx − cutvxx + cvxutx + cuxxvx − cuxvxx + cvxx.

4 Concluding remarks

In this article, copious analytical investigations carried out on generalized geophysical Korteweg
de Vries equation in ocean physics is presented. In the first instance, the theory of Lie group
applied to differential equations was invoked in computing the Lie point symmetries of the
model which gave rise to a four-dimensional Lie algebra. Moreover, calculations are made for
the algebra’s one-parameter transformation groups. Additionally, moving ahead, a procedural
approach is used to derive a one-dimensional optimal system of subalgebra. Following this, the
subgroups and merging of the obtained symmetries are utilized during the reduction process
which allows for the deduction of nonlinear ordinary differential equations related to the studied
generalized geophysical Korteweg de Vries equation. The majority of these non-linear differ-
ential equations have been solved through direct integration or by utilizing the power series
method. In addition, travelling wave solutions were also acquired. This is achieved through
direct integration and the application of the Jacobi elliptic function method. These methods al-
low for the achievement of different exact soliton solutions, which include non-topological soliton
solutions and general periodic function solutions like cosine, sine, and delta amplitude solutions
in the model. Additionally, numerical simulations are used to develop a basic understanding of
the physical phenomena described by the generalized geophysical Korteweg de Vries equation
in ocean physics. Ultimately, the study also focuses on determining conserved vectors in the
model through Ibragimov’s theorem for conservation laws, along with Noether’s theorem. In
consequence, the production of conserved quantities of interest existence in physical sciences was
imminent. These involve energy, and momenta. The investigation contains various rich results
covering a large spectrum of applications.
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