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1.      Introduction   

 

  Let ( )A p  be a real ( )n n  parametric matrix, i.e. matrix whose elements are 

given functions of a real m-dimensional vector 1( ,.., )mp p p  belonging to a 

given interval vector 1( ,.., )mp p p . As is well known, the set of all ( )A p  when 

p varies over p denoted ( )A p , i.e. the set  

( ) { ( ) : }A A p p p p                                                    (1) 

is referred to as an interval parametric (IP) matrix. The elements ( )ija p  of ( )A p  

are, in general, nonlinear functions of p: 

1( ) ( ,..., )ij ij ma p a p p                                        (1a) 

which are assumed continuous; in a special case, ( )ija p  depend affine linearly on 

p, i.e. 

1

( )
m

ij ij ija p a p 





  .                                        (1b) 

       An IP matrix is called regular if each ( ) ( ),A p A p p p  is nonsingular; 

otherwise, it is said to be singular. Presently, there exist two major types of 

problems related to the concept of regularity. 

Problem P1. This is a problem of qualitative nature: check if the matrix ( )A p  

is regular or not. 

Problem P2. Now, it is necessary to determine a quantitative measure for 

regularity of ( )A p .   
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While various methods are known for solving Problem P1 (e.g., [1, 4-6, 9, 10, 

12, 14-16, 18-21]) regarding both cases (1a) and (1b), Problem 2 has seemingly 

been addressed only in [11] where the concept of the so-called regularity radius 
*( ( ))r A p  of ( )A p  has been introduced. It should, however, be stressed that 
*( ( ))r A p  can be defined and computed solely in the case of IP matrices having 

the linear inter-parametric dependencies (1b). Indeed, on account of (1b), the 

parametric matrix ( )A p  can be written in the form 

 



m

pAApA
1

)()0()(





                                             (2) 

and the regularity radius of ( )A p  is defined as [11] 

  
* (0) ( )

1

( ( )) min{ 0 : , }
m

r A r A A r p p is singular

  


   p p .    (3) 

Evidently, ( )A p  is regular if and only if *( ( )) 1r A p . Knowledge of *( ( ))r A p , 

however, provides a quantitative measure: the distance from singularity. 

In the present paper, a new approach to tackling the quantitative aspect of the 

regularity problem is suggested which is applicable to both linear and nonlinear 

parametric dependencies. It consists in reformulating the original problem as an 

equivalent interval parametric linear programming (IPLP) problem. The minimum 

value *m  of the associated IPLP problem provides a new measure for the distance 

of ( )A p  from singularity, so-called regularity margin *( ( ))m A p .  

 The paper is structured as follows. The IPLP formulation of the original 

problem is given in Section 2. The main result of this section is Theorem 1 

establishing the relation between Problem 1 and the regularity margin: it is proved 

that ( )A p  is regular if and only if *( ( )) 0m A p . It is shown that lower or upper 

bounds on *( ( ))m A p  provide solution to the qualitative type of the regularity 

problem. In Section 3, several applications of *( ( ))m A p  or its bounds are listed: 

checking if an IP matrix ( )A p  is positive definite or if a symmetric ( )A p  is stable 

and a P-matrix (Section 3.1), relationships between the real eigenvalue set L of the 

bundle ( ( ), ( ))A Bp p  and the regularity radius  *( ( ))m C ;p  of an auxiliary IP 

matrix ( ) ( ) ( ),   C ; A B R    p p p  (Section 3.2) as well as the case of 

complex ( ( ), ( ))A Bp p  (Section 3.3).  Concluding remarks are given in the last 

section of the paper.  

 

2.   The IPLP formulation 

 

      To formulate the original regularity check problem as an equivalent IPLP, we 

first need an auxiliary result concerning verification of the nonsingularity of a real 

matrix ( )ijA a . Let :iA  and  : jA  denote the i
th

 row and j
th

 column, respectively, 

of A. We first form a reduced ( 1)n n   matrix 'A  by deleting from A its 0j
th
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column. Further, we remove the i0
th

 row 
'

0:iA  of 'A  to obtain the reduced-size 

( 1) ( 1)n n    matrix Br. Let 

      
0

'

: jb A                                                     (4a) 

and 

       
0 :' ic A  . (4b) 

Also, the reduced-length vectors b and c are formed by deleting the i0
th

 element 

from 'b  and 'c , respectively. Now consider the linear system 

        rB x b . (5) 

Assuming that rB  is not a singular matrix, we find the solution 1

rx B b  to (5). 

Next, the n-dimensional column-vector 

       
0 0 01 1 1 1,.., ,1, , ,..,T

j j j nx x x x x                                       (6) 

is formed and the scalar product 

       'l c   (7) 

is computed. The following result is readily proved. 

Lemma 1. Assume the ( 1) ( 1)n n    matrix Br, associated with the matrix A, is 

not singular. Then A is non-singular if and only if 

      0,l   (8) 

where   is computed by way of (4) to (7). 

In a similar way, starting from ( ) { ( )}ijA a  p p  and chosen indices 0i  and 0j , 

we form the reduced size ( 1) ( 1)n n    IP matrix ( )rB p  and the corresponding 

IP vectors ( )b p  and '( )c p . Let ( )c p  denote the ( 1)n  -dimensional interval 

vector obtained by deleting the 0j
th 

element 
0

'

jc  of 'c . Also, let 0

rB , 0b ,  
0

'c  and 

 
0

c  denote the corresponding quantities computed for the midpoint 0p  of p . 

Next, the interval row vector  
0 0

, i j'
c c a  and its centre  

0 0

0 0 0, i jc a   are set 

up. Further, find the solution 0x  to 

      0 0

rB x b , (9) 

form the corresponding vector 0  (using (6)) and compute 

         
00 0'l c  .                                              (10)                              

If 0 0l  , then by Lemma 1 0A  is singular, hence ( )A p  is singular too. Thus 

(without loss of generality), we assume that  

        0 0l                                                     (11) 

(if 0l  is initially negative, it suffices to choose
0

' 0 0

:( ) jb A , which will lead to a 

new vector 0 0    satisfying  
0 0' 0c   ). 

Now consider the following IPLP problem 

       *

0min ( ) ( ) : ( ) ( ), ,rm c p x c p B p x b p p    p                   (12) 

where  
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0 0 0

'

0( ) ( ) ( )j i jc p c p a p  .                                            (13) 

We need the following assumption. 

Assumption 1. The matrix ( )rB p  is regular. 

      On account of Assumption 1, the linear system  

        ( ) ( ),rB p x b p p  p                                               (14) 

is solvable, i.e. the solution set ( ( ), ( ), ) { : ( ) ( ), }r rX B p b p x B p x b p p  p p  

of system (14) is bounded. Hence, the minimum *m  is also bounded. We are now 

ready to state the main result of this section. 

Theorem 1. If 0A  is nonsingular, 0 0l   and Assumption 1 is valid, then the 

interval parametric matrix ( )A p  is regular if and only if 

      * 0,m   (15) 

where 0l  and *m  are defined by (9) to (13). 

Proof.  Sufficiency. If (15) holds, then  

0 0
( ) ( ) ( ) 0i jl p c p x a p    

for any p , p p  and corresponding ( ( ), ( ), )rx X B p b p p . By Lemma 1 the 

related  ( )A p  is non-singular and, hence, ( )A p  is regular. 

Necessity. Assume that (15) is valid but ( )A p  is singular. Since 0A  is nonsingular 

and 0 0l  , the singularity of ( )A p  entails that for some 1p  p  there exists a 

matrix 1 ( )A A p  different from 0A  such that the corresponding product 

0 0

1 1 1 1 0,i jl c x a  
                   

 (16) 

where 1x  is the solution of the associated system 1 1

rB x b . Since *m  is the 

minimum value of  0( ) ( ) ( )l p c p x c p   in (12) (attained at the solution pair *p  

and * *( )x x p ) 

      1 1 1 *

0c x c m  .                                              (17) 

It follows from (17) and the expression 
0 0

1 1 1 1

i jl c x a   that  

1 * 0l m                                                   (18)  

which is a contradiction with 1 0l   in (16).  

The value of *m  provides a quantitative measure for regularity of the IP 

matrix ( )A p  considered. The number *m  will be called the regularity margin of 

( )A p  and will be denoted *( ( ))m A p . 

Corollary 1. Under the assumptions of Theorem 1, the interval parametric matrix 

( )A p  is singular if and only if 

       *( ( )) 0m A p .    (19) 

The regularity margin *( ( ))m A p  is an alternative regularity measure for ( )A p  

with respect to the regularity radius *( ( ))r A p  introduced in [11]. 

     Let ( ( ))m A p  denote a lower bound on *( ( ))m A p , i.e. *( ( )) ( ( ))m A m Ap p  

and  ( ( ))m A p  denote an upper bound on *( ( ))m A p , i.e. *( ( )) ( ( ))m A m Ap p . On 
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account of Theorem 1 and Corollary 1, the following sufficient conditions are 

valid. 

Corollary 2. Under the assumptions of Theorem 1, the interval parametric matrix 

( )A p  is regular if  

      ( ( )) 0m A p ; (20) 

it is singular if  

       ( ( )) 0m A p . (21) 

Remark 1. As shown above, computing *( ( ))m A p  reduces to solving the IPLP 

problem (12).  Nowadays, the latter problem does not seem to have been 

considered in the literature for general nonlinear parametric dependencies in 

( ),c p  ( )rB p  and ( )b p . The case of an IPLP problem having linear parametric 

dependencies has been recently addressed in [10, Section 3.3]; the interval 

(nonparametric) case has been handled in a number of publications (cf., e.g. [2] 

and the references therein cited).  

Determining the bounds ( ( ))m A p  or ( ( ))m A p  is a much easier task since 

these are found as a two-sided approximate solution of the IPLP problem (12). 

The linear parametric dependencies case can be solved using the approach of [10] 

(Theorem 1 and Corollary 1 extended to problem (12)). 

Remark 2. The validity of Assumption 1 can be checked using some of the 

available methods for outer solution of (14), accounting for the structural 

specificity of the IP matrix ( )rB p  [12]. 

.  

3.    Applications 

 

      3.1. Checking properties of ( )A p  

      An IP matrix ( )A p  is called positive definite (p.d.), stable or P-matrix, if each 

real ( ) ( )A p A p  is p.d., stable or P-matrix. It will be now shown that these 

properties of ( )A p  can be checked using the regularity margin *( ( ))m A p of 

( ).A p  

      An interval parametric matrix ( )A p  is called symmetric if each ( ) ( )A p A p  

is symmetric. 

Theorem 2. An interval parametric matrix ( )A p  is positive definite if and only if 

      *(( ( )) 0m S p ,                                                   (22) 

      ( ) (1/ 2)( ( ) ( ) )TS A A p p p                                         (22a) 

and the symmetric IP matrix ( )S p  contains at least one real positive definite 

matrix for a p p . 

Proof. Sufficiency is obvious. To prove necessity, assume to the contrary that,  on 

account of (22), ( )A p  is regular and contains a positive definite matrix 0( )A p  but 

is not positive definite, hence 1( ) 0Tx A p x   for some 1p  p  and 0x  . Denote 

            ( ) ( ( ) ) / , 0,T Tf p x A p x x x x p   p ,  
0

0 ( )A A p ,     
1

1 ( )A A p   

and let  
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0

0 0 0( ) (1/ 2)( )TA A p A A   ,    
1

1 1 1( ) (1/ 2)( )TA A p A A   . 

As is easily seen 

                      0 0 0( ) ( ) ( ) 0f p A p A p   ,     1 1 1( ) ( ) ( ) 0f p A p A p   . 

Now define a real function of one variable by 

                                0 1( ) ( [ (1 ) ]), [0, 1]t f A tp t p t     . 

Since ( )ija p  are assumed continuous, ( )t  is also continuous and because 

(0) (1) 0    there exists a 0 [0, 1]t   with 0( ) 0t  . So 

                                     
0 1

0 0 0' ( ) [ (1 ) ])A A t A t p t p     

is symmetric, ' ( )A A p  and ( ') 0f A  , hence 'A  is singular. Thus, ( )A p  is 

singular so *((1/ 2)( ( ) ( ) )) 0Tm A A p p , which is contradiction with (22).                  

Theorem 3. A symmetric IP matrix ( )A p  is stable if and only if  

     *( ( )) 0m A p                                              (23) 

and it contains at least one stable matrix.  

Proof. Since ( )A p  is symmetric, each ( )A p  has only real eigenvalues. If each 

eigenvalue of ( )A p  is negative to ensure stability, then each ( )A p  is p.d., 

hence ( )A p  is p.d., which by Theorem 2 entails the validity of the present 

theorem. 

Theorem 4. A symmetric interval parametric matrix ( )A p  is a P-matrix if and 

only if 

      *( ( )) 0m A p                                                (24) 

and it contains at least one real P-matrix matrix. 

      The proof is similar to that of Theorem 3. 

      On account of Theorems 2 to 4, the following sufficient conditions are valid. 

Corollary 3. An interval parametric matrix ( )A p  is positive definite if         

        (( ( )) 0m S p                                                   (25) 

and the IP matrix ( )S p  (defined in (22a)) contains at least one real positive 

definite matrix for a p p . 

Corollary 4. A symmetric IP matrix ( )A p  is stable if  

      ( ( )) 0m A p                                                    (26) 

and it contains at least one stable matrix. 

Corollary 5. A symmetric interval parametric matrix ( )A p  is a P-matrix if  

      ( ( )) 0m A p                                                 (27) 

and it contains at least one real P-matrix matrix. 

      3.2. Real eigenvalue problems 

We revisit several problems [11, Section 3] related to bounding or determining 

the set L of all real eigenvalues of the bundle ( ( )A p , ( )B p ), i.e. the set of all real 

eigenvalues of the following parametric generalized eigenvalue problem 

      ( ) ( )A p x B p x ,  p p .                                            (28) 

The first problem is: how to establish whether a real number   belongs to L or 

not. In [11], it has been established that the answer to this question is given by the 
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numerical value of the regularity radius *( ( ; ))r C p  of the following auxiliary IP 

matrix 

 ( ; ) ( ) ( )C A B  p p p .                                          (29) 

We now show that a similar result can be obtained if the regularity margin 
*( ( ; ))m C p  is used. 

From (28), the set L of all real eigenvalues of the bundle ( ( )A p , ( )B p ) is 

defined as follows: 

        : ( ) ( ), 0L R A p x B p p , x     p .                                    (30) 

Lemma 2. [11] A real number   is an eigenvalue of the bundle ( ( )A p , ( )B p ) if 

and only if the IP matrix (29) is singular. 

On account of Theorem 1, Corollary 1 and Lemma 2, the following theorem is 

valid. 

Theorem 5. L  if and only if 

 *( ( ; )) 0m C  p .                                        (31) 

Conversely L  if and only if 

 
*( ( ; )) 0m C  p .                                                  (32) 

      Let L  denote the boundary of L. To prove a result concerning the case 

L , we need the following additional facts. The relation (28) defines each 

eigenvalue 
k
  as an implicit function of p, i.e. ( )k k p   for p p . In case of 

real eigenvalues, the range 
**

[ , ]k k
 *

kλ  is given by the real set 

{ : ( ) ( ) , }k A p x B p x p   *

kλ p . Each endpoint of the interval 
**

[ , ]kk *

kλ  

is found as the global solution of a respective optimization problem: 

 
*

min{ ( ) : ( ) ( ) , }k k p A p x B p x p     p ,                  (33a) 

 
*

max{ ( ) : ( ) ( ) , }k k p A p x B p x p     p .                  (33b) 

As in [11], the intervals *

kλ  are assumed disjoint. Thus, L  is made up of the 

union of the points 
*

k  and 
*

k , {1,..., }k K  where K is the total number of 

intervals *

kλ .  

An interval parametric matrix ( )A p  is referred to as minimally singular if [11] 
*( ( )) 1r A p . Obviously, an alternative condition is  

*( ( )) 0m A p .                                              (34) 

Theorem 6. L  if and only if 

 *( ( ; )) 0m C  p .                                            (35) 

The proof of the theorem is similar to that of Theorem 4 in [11] and is therefore 

omitted. 

Remark 3. Let the upper bound k  on 
*

k  have been found using some local 

optimization technique for locating 
*
.k  Theorem 6 provides a simple global 

optimality check for k : if condition ( ( ) ( )) 0*

km A Bp p =  is fulfilled, then 
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k  is, in fact, equal to 
*

k  . Similarly, the lower bound k  on the right end-point 
*

k  of the real eigenvalue range 
*

k
λ  determines  

*

k  itself, i.e.  
*

,kk    if 

( ( ) ( )) 0*

km A Bp p =
. 

      Next, sufficient conditions for a given   to belong to L or not are suggested. 

They are based on the use of a lower ( ( ; ))m C p  or upper ( ( ; ))m C p  bound on 
*( ( ; ))m C p . On account of Theorem 5, the following result is valid. 

Corollary 6. If  

 ( ( ; )) 0m C  p ,                                                        (36) 

then L . Conversely, if 

 ( ( ; )) 0m C  p ,                                                       (36a) 

then L .  

          The second assertions of Theorem 5 and Corollary 6 can be extended in the 

following way. Let a  where a  is a real interval. On account of (29), define 

an augmented parameter vector '
p  and a corresponding matrix  

      ( ) ( ) ( )C A B '
p p a p ,  = ( ),  '

p p a .                               (38) 

We provide a criterion certifying that the whole interval a  does not belong to L. 

Theorem 7. Let a  be a real interval. Then La  if and only if 

 *( ( )) 0m C '
p .                                                  (39) 

where ( )C '
p  is defined in (38). 

      Corollary 6 is modified in the same manner. 

      Theorem 7 (Corollary 6) can be useful in developing algorithms for finding 

two-sided bounds  on each real eigenvalue of (41) deleting “superfluous parts” of 

the real axis.  

       3.3. Complex eigenvalue problems 

The results of the previous subsection can be extended to the case of complex 

matrices 

     1 2( ) ( ) ( )A p A p iA p                                           (40)  

of real parameters (in some cases, matrices containing complex parameters can be 

transformed to the form (40) where the vector p regroups the real and imaginary 

parts of the corresponding complex components of the initial p). Now the 

parametric generalized eigenvalue problem (28) becomes 

      1 2 1 2 1 2 1 2[ ( ) ( )][ ] [ ] ( )[ ]A p iA p x ix i B p x ix      ,  p p .             (41) 

where, for simplicity of presentation, ( )B p  is assumed to be real. The set of all 

eigenvalues of (41) will be denoted cL . We are interested in verifying whether a 

complex number 1 2i     belongs to  cL  or not. 

      To answer this question using the approach of Section 3.2, we first transform 

the complex ( )n n  system (41) into an equivalent real (2 2 )n n  system by 

separating real and imaginary parts in (41). As is readily seen, the augmented-size 

real system is  
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      1 2( ; , ) 0C p x   ,   
1

2

x
x

x

 
  
 

,  p p                                    (42) 

where 

      
1 1 2 2

1 2

2 2 1 1

( ; , )
A B A B

C p
A B A B

 
 

 

   
  

  
.                             (42a) 

By analogy with Lemma 2, the following result is valid. 

Lemma 3.  A complex number 1 2i     is an eigenvalue of the bundle 

( ( ),A p ( )B p ) where ( )A p  is a complex and ( )B p is a real IP matrix if and only if 

the real IP matrix 1 2( ; , )C  p    defined as in (42a) is singular. 

On account of Theorem 5 and Lemma 3, the following theorem holds. 

Theorem 8. The complex number cL   if and only if 

 *

1 2( ( ; , )) 0m C   p .                                             (43a) 

Conversely, cL   if and only if 

 *

1 2( ( ; , )) 0m C   p .                                         (43b) 

      In a similar manner, extension of Theorems 5 and 7 as well as Corollary 6 can 

be obtained. More specifically, we refer to the extended version of Theorem 7. Let 

1 1 a  and 2 2 a  where 1a  and 2a  are real intervals. Using (42a), define the 

matrix  

      
1 1 2 2

1 2

2 2 1 1

( ) ( ) ( ) ( )
( ; )

( ) ( ) ( ) ( )

A B A B
C , 

A B A B

   
  

  

p a p p a p
p a a

p a p p a p
.                      (44) 

Theorem 7 is modified as follows. 

Theorem 9. Let 1a  and 2a  be real intervals. Then 1 2 ci L  a a a  if and only if

  *

1 2( ( ; )) 0m C , p a a                                                 (45) 

where 1 2( ; )C , p a a  is defined in (44). 

 Theorem 9 can be useful in various ways. One example is developing 

algorithms for:  (i) locating a complex interval enclosing all possible values for a 

given complex eigenvalue 1 2i     of (41) over p or (ii) finding bounds 1 2, b b  

on the whole set cL .  

 Another possibility is to help solving the following robustness problem 

related to (41). Let for a fixed 0p  p  the eigenvalues of (41) be denoted 

2

( ) ( ) ( )

0 1 0 0( ) ( ) ( )k k kp p i p    . Assume that they have the following Property P: 

for a given r R  the real parts ( )

1 0( )k p  of 1n  eigenvalues are smaller than r 

whereas the real parts of the remaining eigenvalues are larger than r. The problem 

is to check whether the eigenvalues of (41) are robust, i.e. if Property P remains 

valid for all p p . Let  

      
1 2 2

2

2 2 1

( ) ( ) ( ) ( )
( ; )

( ) ( ) ( ) ( )

A rB A B
C r, 

A B A rB

   
  

  

p p p a p
p a

p a p p p
.                    (46) 

The following theorem offers a solution to the problem stated. 
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Theorem 10. The eigenvalues of (41) are robust with respect to Property P if  

 *

2( ( ; )) 0m C r, p b                                            (47) 

where 
2 2[0, ]ubb  is an upper bound on the imaginary parts of the 1n  

eigenvalues of (41) and (41) contains at least one instance having the property P. 

 An illustration of the above theorem will now be given for a particular 

case where ( )A p  is real, ( )B Ip , 1n n  and 0 0.r r   Obviously, these 

conditions define the problem of checking if a real (non-symmetric) IP matrix is 

(critically) stable ( 0 0r  ) or stable with a stability margin 0r  ( 0 0r  ). In this case  

     
0 2

0 2

2 0

( )
( ; )

( )

A r I I
C r , 

I A r I

 
  

  

p b
p b

b p
.                                  (48) 

Theorem 11. A real IP matrix ( )A p  is stable ( 0 0r  ) or stable with a stability 

margin 0r  ( 0 0r  ) if  

 *

0 2( ( ; )) 0m C r , p b                                                 (49) 

where 0 2( ; )C r , p b  is defined by (48)  while 
2 2[0, ]ubb  is an upper bound on the 

imaginary  parts of the complex eigenvalues of ( )A p , and ( )A p contains at least 

one real matrix that is stable or stable with a stability margin 0r . 

 This theorem is an alternative of another result [7] where the stability 

(stability measure) of ( )A p  is established by determining a so-called stability 

radius, which is a more expensive approach. It should be also mentioned that 

Theorem 11 can be extended to the case of the real bundle  

     ( )A p x B x ,  p p .                                                (50) 

Such an approach seems to be a better alternative than the solution suggested in 

[8]. 

 Finally, the quasi-aperiodic property of a real IP matrix (or bundle (50)) will 

be considered. A real ( )A p  is called aperiodic if all eigenvalues of any ( )A p  

(bundle), p p  are real and negative. This property has been considered for the 

special case of interval (nonparametric) matrices in [13] where so-called robust 

linear algebra is used. Here the general approach of (44) and Theorem 9 is 

modified in the following manner 

     
1

1

1

( )
( ; )

( )

A I I
C , 

I A I






 
  

  

p b
p b

p b
                                    (51) 

where 1b  is a two-sided bound along the real axis on all eigenvalues of ( )A p  and 

0   is a small constant. A real ( )A p  will be called quasi-aperiodic if all 

eigenvalues of any ( )A p  (bundle), p p  have negative real parts and any 

imaginary part remains smaller in magnitude than  . We have the following 

result. 

Theorem 12. A real IP matrix ( )A p  is quasi-aperiodic if  
*

1( ( ; )) 0m C ,  p b ,                                         (52) 
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where 1( ; )C , p b  is defined by (51), 1b  is a two-sided bound along the real axis 

on all eigenvalues of ( )A p , and ( )A p contains at least one real matrix that is 

aperiodic. 

      The proof of the theorem is based on the fact that if ( )A p  is quasi-aperiodic, 

then the equivalent complex representation (51), cannot have solutions on the line 

parallel to the real axis within 1b  and distant at  . 

      It is to be noted that Theorems 8 to 12 can be modified to give only sufficient 

conditions if the corresponding *m  is replaced with a bound m  or m . 

 

4.     Conclusion 

 

  The concept of regularity margin *( ( ))m A p  of an interval parametric (IP) 

matrix ( )A p  has been suggested, which is an alternative to another quantitative 

regularity measure, the regularity radius *( ( ))r A p  [11] of ( )A p . While *( ( ))r A p  

can be defined only for IP matrices having linear parametric dependencies (1b),  
*( ( ))m A p  can be introduced for matrices of the general non linear parametric 

dependencies type (1a).  

  It has been shown (Section 2) that *( ( ))m A p  can be determined as the 

minimum of an associated interval parametric linear programming problem (12). 

The use of *( ( ))m A p  leads to a new necessary and sufficient condition (Theorem 

1) for ascertaining regularity of ( )A p . Sufficient conditions for ( )A p  to be 

regular or singular, based on upper  ( ( ) )m A p  on lower ( ( ))m A p  bounds on 
*( ( ))m A p ,  are given in Corollary 2.  

  Several applications of the regularity margin or its bounds related to various 

robustness problems are illustrated in Theorems 2 to 12 and Corollaries 3 to 6 in 

Section 3.  

  It should be mentioned that the above concepts and results suggested for 

interval parametric matrices are applicable, after obvious modifications, to the 

case of interval (nonparametric) matrices. 

  It is expected that development of more efficient methods for computing 
*( ( ))m A p  or the bounds ( ( ))m A p  and ( ( ))m A p  would lead to a broader 

applicability of the present approach to assessing regularity quantitatively or 

qualitatively.   
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