
Advanced Mathematical Models & Applications

Vol.8, No.2, 2023, pp.241-252

A NUMERICAL APPROACH FOR SOLVING BAGELY-TORVIK AND
FRACTIONAL OSCILLATION EQUATIONS

ID S. Salati∗, ID M. Matinfar, ID H. Jafari

Department of Applied Mathematics, University of Mazandaran, Babolsar, Iran

Abstract. In this article, we obtain numerical solutions of Bagely-Torvik and a class of fractional oscillation

equations by using a numerical method based on Hosoya and Clique polynomials. The fractional derivative is in

the Coputo sense. In this method, first we convert the given fractional order differential equations to corresponding

fractional integral equations, and then we use the Rayleigh-Ritz method and collocation points to transform the

fractional integral equation into a system of algebraic equations. Finally, we gain a numerical result by solving

the consequent algebraic system.
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1 Introduction

In the last few decades, fractional-order calculus has been studied as an alternative calculus in
mathematics as well as in other fields of science and engineering. Fractional derivatives have
been used to simulate a wide range of problems in physics, chemistry, biology, and engineer-
ing (Podlubny (1998); Ross (1977); Torvik & Bagley (1984, 1985)). Because most fractional
order differential equations do not have exact analytic solutions, approximation and numerical
approaches are widely used.

The fractional derivative (FD) is useful in presenting long-memory processes and materi-
als, anomalous diffusion, long-range interactions, long-term behaviours, power laws, and so on.
Because the FD has a non-local feature, it is difficult to solve fractional differential equations
(FDE). Because most fractional order differential equations do not have exact analytic solutions,
approximation and numerical approaches are widely used. Researchers are now working on a
solution to FDE by creating new analytical and numerical methodologies. The widespread use
of FDE motivates the development of analytical and numerical techniques to solve it (Narsale
et al. (2023)).

One of the well-known fractional order differential equations is the Bagely-Torvik equation
(BTE). In 1983, the BTE was introduced by Bagley and Torvik as an application of fractional
calculus for studying viscoelastically damped structures and their vital role in applied science and
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engineering problems, especially any linearly damped fractional (Fazli & Nieto (2019); Torvik
& Bagley (1984, 1985)). A general form of BTE is given as:

χu′′(ξ) + γ D
3
2u(ξ) + κ u(ξ) = f(ξ), 0 < ξ, (1)

u(0) = u0, u′(0) = u1,

where χ 6= 0, γ and κ are real numbers. D
3
2 is a Caputo fractional derivative and f(ξ) is known

function.
The BTE has been studied by many researchers.

The BTE has been solved by many methods, such as the Adomian decomposition method
(Daftardar & Jafari (2005, 2007)), the variational iteration method (VIM), the fractional iter-
ation method (FIM) (Mekkaoui & Hammouch (2012)), the shifted Legendre-collocation (SLC)
(El-Gamel & El-Hady (2017)) and the Ritz method (Firoozjaee et al. (2015)). In (Fazli & Ni-
eto (2019)), the authors proved the existence and uniqueness of solutions for the Bagely-Torvik
equation.

The oscillation of a function on an interval in its domain is the difference between its extreme
values, i.e. supremum and infimum. The fractional type of oscillation differential equation is
(Bartusek & Dosla (2023) )

Dαu(ξ) + p(ξ)K(u(ξ)) = 0, ξ > 0, (2)

where n − 1 < α < n, n ∈ N, n > 2, p is a real-valued positive continuous function on the
interval (0,∞) so that p ∈ L1(0, 1), and Dα is fractional differential operator, and the function
K ∈ C0(R), K(ν)ν > 0 for ν 6= 0.

A solution u of (2) is called oscillatory if it has arbitrary zeros; otherwise, it is nonoscillatory
(Bartusek & Dosla (2023) ).

In this paper, we solve equations (1) and (2) by using the Rayleigh-Ritz method based on
Hosoya and Clique polynomials.
The paper is organized as follows: In Section 2 basic definitions are given. Section 3 deals with
presented method. Some test examples have been presented in Section 4. This is followed by
the conclusions, which are summarized in Section 5.

2 Primary definitions

In this part, we first give a brief review of some basic definitions of fractional calculus, Hossoya
and Clique polynomials.

2.1 Basic Definitions of FC

Definition 1. The Riemann-Liouville fractional integral of the order ς of a function f is defined
as follows (Podlubny (1998)):
-The left-side Riemann-Liouville integral

RLIς
a+

[f(ξ)] =
1

Γ(ς)

∫ ξ

a
(ξ − t)ς−1f(t)dt, ξ ≥ a, n− 1 < ς ≤ n, n ∈ N. (3)

-The right-side Riemann-Liouville integral

RLIς
b− [f(ξ)] =

1

Γ(ς)

∫ b

ξ
(t− ξ)ς−1f(t)dt, ξ ≤ b.
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Definition 2. The Riemann-Liouville fractional derivative of order ς is defined as follows (Pod-
lubny (1998)):
-left-side Riemann-liouville derivative

RLDς
a+

[f(ξ)] =
1

Γ(n− ς)
dn

dξn

∫ ξ

a
(ξ − t)n−ς−1f(t)dt, ξ ≥ a.

- right-side Riemann-Liouville derivative

RLDς
b− [f(ξ)] =

(−1)n

Γ(n− ς)
dn

dξn

∫ b

ξ
(t− ξ)n−ς−1f(t)dt, ξ ≤ b.

Definition 3. Let f ∈ Cn−1, n ∈ N. The Caputo fractional derivative of order ς is defined as
follows (Podlubny (1998)):

-The left-side Caputo derivative

CDς
a+

[f(ξ)] =
1

Γ(n− ς)

∫ ξ

a
(ξ − t)n−ς−1 d

n

dtn
f(t)dt, ξ ≥ a.

- The right-side Caputo derivative

CDς
b− [f(ξ)] =

(−1)n

Γ(n− ς)

∫ b

ξ
(t− ξ)n−ς−1 d

n

dtn
f(t)dt, ξ ≤ b.

In further discussion we will denote CDς
a+

and RLIς
a+

as Dς and Iς , respectively. If the
fractional derivative of the function f(ξ) is integrable, then

IςDβf(ξ) = Iς−βf(ξ)−
n−1∑
r=0

f (r)(0)
(ξ − a)ς−β+r

Γ(ς − β + r + 1)
, n− 1 ≤ β < n, ς ≥ β, a < ξ < b. (4)

IςDςf(ξ) = f(ξ)−
n−1∑
r=0

f r(0)
ξr

r!
, n− 1 < ς ≤ n. (5)

2.2 Hosoya polynomial

Let graph G contain n vertices, and X is a set of unordered pairs of distant vertices. Each pair
(u, v) of vertices in set X is named an edge of G. If the vertices u and v are connected by an
edge, then u and v are adjacent vertices (Ramane et al. (2017)).

let v1, v2, . . . , vn be the vertices of G where vi is adjacent to vi+1, i = 1, 2, . . . , n− 1.
The length of a path in graph G is the number of edges. A graph G is called connected if every
pair of vertices of G is joined by a path (Ramane et al. (2017)).

(For more information refer to the book (Stevanovic (2001))).
The first distance-based index is the Wiener index, which was expressed in 1947 by H. Wiener

(Tratnik & Pleteršek (2017)). Hosoya polynomial of a path graph is a generating function that
was presented by Hosoya (Hosoya (1998)) in 1988 and is generalised from the Wiener number
(Gecmen & Celik (2021)). The Hosoya polynomial results from certain vertices pair of path
graphs (Gecmen & Celik (2021)).

Definition 4. For a connected graph G (Ramane et al. (2017)), Hosoya polynomial based on n
vertex values and, a path as ρn is defined as follows (Gecmen & Celik (2021))

H(G, ξ) =
n∑
l=0

d(G, l)ξl,

where d(G, l) is the number of pairs of vertices in the graph G with distance l and ξ is the
parameter (Ramane et al. (2017)).
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The Wiener index is expressed as follows:

W (G) = H ′(G, ξ),

where H ′(G, ξ) is a derivative of H(G, ξ)(Ramane et al. (2017)).
Hosoya polynomials are obtained and computed as fallows (Geçmen et al. (2021)

H(ρ1, ξ) =
1∑
l=0

d(ρ1, l)ξ
l = 1,

H(ρ2, ξ) =

2∑
l=0

d(ρ2, l)ξ
l = 2 + ξ,

H(ρ3, ξ) =
3∑
l=0

d(ρ3, l)]ξ
l = 3 + 2ξ + ξ2, (6)

...

H(ρn, ξ) =
n∑
l=0

d(ρn, l)ξ
l = n+ (n− 1)ξ + (n− 2)ξ2 + · · ·+ (n− (n− 1))ξn−1.

In (Ramane et al. (2017)), the Hosoya polynomial is used to obtain the numerical solution of
Fredholm integral equations. In (Gecmen & Celik (2021);Geçmen et al. (2021)), the numer-
ical solutions of Volterra-Fredholm and Volterra integral equations has been obtained using
numerical methods based on Hosoya polynomial. The Hosoya polynomial of simple paths was
used to obtain operational matrices to solve time fractional advection-diffusion and Kolmogorov
equations (Jafari et al. (2023); Zhou et al. (2023)).

2.3 Clique polynomial

Definition 5. The Clique polynomial (CD) of a graph G is expressed as follows:

C(G, ξ) =

n∑
i=0

ai(G)ξi,

where a0(G) = 1 and ai(G) is the number of i-Cliques of graph G or the number of complete
subgraphs with i vertices (Hoede & Li (1994)),(Ganji et al. (2021)). If V (G) = 0, we have
C(G, ξ) = 1. a1 = |V (G)| is the number of vertices of graph G, and a2 = |E(G)| is the number
of edges of graph G (Hoede & Li (1994)).

The Clique polynomial of a complete graph G with i vertices is expressed by (Ganji et al.
(2021))

C(Gi, ξ) = (1 + ξ)i.

3 The method

Consider the Bagely-Torvik equation (1) when χ = 1 as follows:

u′′(ξ) + γD
3
2u(ξ) + κu(ξ) = f(ξ), ξ > 0, (7)

u(0) = u0, u′(0) = u1.

To solve (7), we apply the I2 operator on both sides of the above equation. It gives:

I2u′′(ξ) + γI2D
3
2u(ξ) + κI2u(ξ) = I2f(ξ),

244



SALATI et. al.: A NUMERICAL APPROACH FOR SOLVING BAGELY-TORVIK AND FRACTIONAL...

u(ξ)− u1ξ − u0 + γI2D
3
2u(ξ) + κI2u(ξ) = I2f(ξ), (8)

In view of (4), equation (8) can be written as follows:

u(ξ) = u1ξ + u0 − γ

(
I

1
2u(ξ)−

1∑
r=0

ur(0)
(ξ − a)

1
2

+r

Γ(1
2 + r + 1)

)
− κI2u(ξ) + I2f(ξ),

so,

u(ξ) = u1ξ + u0 − γ
(
I

1
2u(ξ)− 2u0√

π
(ξ − a)

1
2 − 4u1

3
√
π

(ξ − a)
3
2

)
− κI2u(ξ) + I2f(ξ).

We get,

u(ξ) = τ(ξ)− γI
1
2u(ξ)− κI2u(ξ), (9)

where

τ(ξ) = u1ξ + u0 + γ

(
2u0√
π

(ξ − a)
1
2 +

4u1

3
√
π

(ξ − a)
3
2

)
+ I2f(ξ).

Using equation (3), we rewrite the equation (9) in the following form:

u(ξ) = τ(ξ)− γ 1√
π

(∫ ξ

0
(ξ − t)

−1
2 u(t)dt

)
− κ

(∫ ξ

0
(ξ − t)u(t)dt

)
. (10)

We use the following theorem to assume the approximate solution of (10) in a finite series form.

Theorem 1. (Tajadodi et al. (2022)) Let u(ξ) ∈ L2[0, 1], Υ (ξ) polynomial in the matrix form
Υ (ξ) = [Υ1(ξ), Υ2(ξ), . . . , ΥN (ξ)]T and C coefficient in the matrix form C = [c1, c2, . . . , cN ]T ,
then function Υ (ξ) can be approximated as follows:

u(ξ) =

N∑
n=0

CiΥi(ξ) = CTΥ (ξ).

According to the above theorem, function u(ξ) ∈ L2[0, 1] can be expanded based on the
Hosoya (or Clique) polynomial as fallows:

u(ξ) =
n∑
i=1

λiH(ρi, ξ) = ΛTHρ(ξ), (11)

where Λ and Hρ(ξ) are n× 1 matrices,

Λ = [λ1, λ2, . . . , λn]T ,

Hρ(ξ) = [H(ρ1, ξ), H(ρ2, ξ), . . . ,H(ρn, ξ)]
T .

Now we substitute (11) in the equation (10). It leads to

ΛTHρ(ξ) = τ(ξj)− γ
1√
π

(∫ ξ

0
(ξ − t)

−1
2 ΛTHρ(t)dt

)
− κ

(∫ ξ

0
(ξ − t)ΛTHρ(t)dt

)
,

ΛT
(
Hρ(ξ) + γ

1√
π

∫ ξ

0
(ξ − t)

−1
2 Hρ(t)dt+ κ

∫ ξ

0
(ξ − t)Hρ(t)dt

)
= τ(ξ),

so,
ΛT (Hρ(ξ) + φ(ξ)) = τ(ξ), (12)

where

φ(ξ) = γ
1√
π

(∫ ξ

0
(ξ − t)

−1
2 Hρ(t)dt

)
+ κ

(∫ ξ

0
(ξ − t)Hρ(t)dt

)
.
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To obtain the unknown coefficient λi, i = 1, 2, · · · , n in (12), we use collocation points
ξj = j−0.5

n , j = 1, 2, . . . , n. By substituting the collocation points in (12), we will have

ΛT (Hρ(ξj) + φ(ξj)) = τ(ξj), (13)

where

φ(ξj) = γ
1√
π

(∫ ξj

0
(ξj − t)

−1
2 Hρ(t)dt

)
+ κ

(∫ ξj

0
(ξj − t)Hρ(t)dt

)
.

which is a system of algebraic equations. Finally, by solving the obtained system of algebraic
equations with a mathematics software, the coefficients Λ will be computed. After that, by
replacing coefficients Λi in equation (11), we can achieve the desired results.

Remark 1. We can use Click polynomials or Taylor polynomials instead of Hosoya polynomials
in (11).

Remark 2. We use the given collocation points when ξ ∈ [0, 1] for the other interval we use
change of variables.

4 Test Examples

In this section, we solve different cases of equations (1) and (2) with the presented method in
the previous section, and compare our results with obtained results by using other methods.

Example 1. Consider the following fractional Bagely-Torvik equation:(Fazli & Nieto (2019))

u′′(ξ)− 2
5D

3
2u(ξ)− 1

2u(ξ) = f(ξ), 0 < ξ ≤ 1 (14)

u(0) = 0, u′(0) = 9
16 ,

where f(ξ) = −1
2ξ

3 + 3
4ξ

2 + 183
32 ξ − 3− 4

5

√
ξ(−3+4ξ)√

π
. The exact solution is u(ξ) = ξ3 − 3

2ξ
2 + 9

16ξ.

By applying the inverse operator I2 on the both sides of (14) and substituting the given
initial conditions, we have

u(ξ) =
9

16
ξ − 3ξ

3
2

10
√
π

+

∫ ξ

0
(ξ − t)f(t)dt+

2

5
√
π

∫ ξ

0
(ξ − t)

−1
2 u(t)dt+

1

2

∫ ξ

0
(ξ − t)u(t)dt.

By assuming u(ξ) =
∑4

i=1 λiH(ρi, ξ) and substituting it in the above equation, we obtain λi by

solving the system of equations at the collocation point ξj =
j− 1

2
n j = 1, 2, 3, 4 as fallows:

λ1 = 2.625, λ2 = 4.5625, λ3 = −3.50 and λ4 = 1.

Then, by putting the above coefficients in u(ξ), we have

u(ξ) =

4∑
i=1

λiH(ρi, ξ) = −2.625 + 4.5625(2 + ξ)− 3.5(3 + 2ξ + ξ2) + 4 + 3ξ + 2ξ2 + ξ3

= ξ3 − 1.5ξ2 + 0.5625ξ,

which is an approximate solution for this problem. Table 1 and figure 1 show the results of
the desired method.

Example 2. Let χ = γ = κ = 1 and f(ξ) = 7ξ+ 8√
π
ξ

3
2 + ξ3 + 1 in the Bagely-Torvik’s equation

(1) (Mekkaoui & Hammouch (2012)):

u′′(ξ) +D
3
2u(ξ) + u(ξ) = f(ξ), 0 < ξ < 1, (15)

u(0) = u′(0) = 1.

The exact solution of this problem is u(ξ) = ξ3 + ξ + 1.
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ξ Approximat Sol. Approximat Sol.
(Hosoya Poly.) (Clique poly.)

0.125 0.0488281 0.0497254
0.375 0.0527344 0.0531018
0.625 0.00976563 0.0105202
0.875 0.0136719 0.0142122

Table 1: The numerical results obtained based on Hosoya and Clique polynomials Example 1

●

●

●

●

ξ

0.01

0.02

0.03

0.04

0.05

0.06

Figure 1: Comparison between the exact solution (Black Line) and approximate solution (Red
Circles) based on Hosoya polynomial for Example 1

In similar way, we assume u(ξ) =
∑4

i=1 λiH(ρi, ξ). Then, we substitute u(ξ) into corre-
sponding integral equation of (15). After that, we used collocation points to obtain λi. It leads
to

u(ξ) =

4∑
i=1

λiH(ρi, ξ) = −1 + 2(2 + ξ)− 2(3 + 2ξ + ξ2) + (4 + 3ξ + 2ξ2 + ξ3) = ξ3 + ξ + 1.

which is the exact solution.

We compared the approximate results based on the Hosoya polynomial with the obtained re-
sults by the variational iteration method (VIM) (Mekkaoui & Hammouch (2012)), the fractional
iteration method (FIM) Mekkaoui & Hammouch (2012), and the shifted Legendre-collocation
(SLC) (El-Gamel & El-Hady (2017)) in Table 2 .

ξ Approximat Sol. VIM FIM SLC
(Hosoya Poly.)

0.10 1.101000 1.183140 1.103763 1.101000
0.25 1.265625 1.438783 1.269040 1.265625
0.50 1.625000 1.519844 1.623997 1.625000
0.75 2.171875 0.83.835 2.166900 2.171875
1.00 3.000000 -1.113593 2.994988 3.000002

Table 2: Comparison approximate solution based on the Hosoya polynomial with VIM, FIM and
SLC for Example 2

Example 3. Consider the following BT equation:(Daftardar & Jafari (2007))

u′′(ξ) +D
3
2u(ξ) + u(ξ) = 1 + ξ,

u(0) = u′(0) = 1,

where the exact solution is u(ξ) = ξ + 1.
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●

●

●

●

●

ξ

1.5

2.0

2.5

3.0

u

Figure 2: Comparison between the exact solution (Black Line) and approximate solution (Red
Circles) for Example 2

We assume u(ξ) =
∑2

i=1 λiH(ρi, ξ). Then, by applying same procedure, we obtain λ1 = −1
and λ2 = 1. So u(ξ) = −1 + (2 + ξ) = 1 + ξ, which is the exact solution.

Example 4. Consider the following type of homogenous Bagely-Torvik’s equation (Daftardar &
Jafari (2005)):

u2(ξ) + uα1(ξ) + u(ξ) = 0,

u(0) = 1, u′(0) = 0,

where α ∈ (0, 1), α1 = α + 1. In (Daftardar & Jafari (2005)), the authors solved it using the

Adomian decomposition method. They obtained u(ξ) =
∑∞

m=0

(∑[m
2

]

j=0

(
amj(−1)m+jξm(1−α)+2jα

Γ(m(1−α)+2jα+1)

))
,

where

amj =


am−1,j + am−2,j−1 , 1 ≤ j ≤ m

2
1 ,m = j = 0
0 , otherwise

The obtained numerical result when n = 20 in (11) based on Hosoya polynomials and the given
result by the Adomian decomposition method for m = 20 are compared in Table 3 and Figure3.

ξ Approximate Sol. The ADM
(Hosoya Poly.)

0.15625 0.98906 0.989066
0.46875 0.914628 0.914631
0.78125 0.790792 0.790795
1.09375 0.636988 0.63699
1.40625 0.469136 0.469137
1.71875 0.300289 0.30029
2.03125 0.14078 0.140781
2.34375 -0.00167922 0.00167898
2.65625 -0.121861 -0.121861
2.96875 -0.216802 -0.216803
3.28125 -0.285527 -0.285528
3.59375 -0.328721 -0.328722
3.90625 -0.348382 -0.348384
4.21875 -0.347464 -0.347467
4.53125 -0.32954 -0.329544
4.84375 -0.29849 -0.298498

Table 3: Approximate solutions based on the Hosoya polynomial and the ADM (Daftardar & Jafari
(2007)) when α = 0.25 in the interval [0, 5] for Example 4
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Figure 3: Comparison between obtained result with presented method (Red Circles) and the ADM
(Black Line) for Example 4

Example 5. Consider the following fractional oscillation equation:(Daftardar & Jafari (2005))

D(1+α)u(ξ) + b u(ξ) = f(ξ), α ∈ (0, 1], (16)

u(0) = u0, u′(0) = u1.

To solve the above equation, we apply I(1+α) on the both sides of (16).

I(1+α)D(1+α)u(ξ) + bI(1+α)u(ξ) = I(1+α)f(ξ).

In view of (3),(5) and the given initial condition, the previous equation can be rewritten as
follows:

u(ξ) +

(
b

Γ(1 + α)

∫ ξ

0
(ξ − t)αu(t)dt

)
= τ(ξ), (17)

where

τ(ξ) = u0 + ξu1 +
b

Γ(1 + α)

∫ ξ

0
(ξ − t)αf(t)dt.

We assume u(ξ) as fallows

u(ξ) =
n∑
i=1

λiH(ρi, ξ) = ΛTHρ(ξ), (18)

where Λ is a vector of unknown coefficient and H(ρi, ξ) are the Hosoya polynomial of simple
paths.

By putting equation (18) in the equation (17) and using collocation points ξj = j−0.5
n , j =

1, 2, . . . , n, we get

ΛTHρ(ξj) +

(
b

Γ(1 + α)

∫ ξj

0
(ξj − t)αΛTHρ(t)dt

)
= τ(ξj),

ΛT
(
Hρ(ξj) +

b

Γ(1 + α)

∫ ξj

0
(ξj − t)αHρ(t)dt

)
= τ(ξj),

so
ΛT (Hρ(ξj) + φ(ξj)) = τ(ξj), (19)

where

φ(ξj) =
b

Γ(1 + α)

∫ ξj

0
(ξj − t)αHρ(t)dt.

Finally, by solving the system of equations (19), the coefficients Λ are obtained, and by
replacing the coefficients Λ in equation (18), we can achieve an approximate solution.
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Let f(ξ) = 0 and b = 1, the approximate solution of (19) by using the Adomian decom-

position method is u(ξ) = 1 +
∑∞

k=1
(−1)kξk(1+α)

Γ(1+k(1+α)) (Daftardar & Jafari (2005)). In Table 4 and
Figure4 we compared the numerical result obtained by the presented method based on Hosoya
polynomials when n = 11 in (11) with the given result by the Adomian decomposition method
(Daftardar & Jafari (2005)).

ξ Approximate Sol. Approximate Sol. ADM

(Hosoya Poly.) (Clique Poly.)
(Daftardar & Jafari
(2005))

0.363636 0.928159 0.927047 0.928138
1.09091 0.444878 0.442113 0.444827
1.81818 -0.237789 -0.24011 -0.237836
2.54545 -0.768932 -0.771244 -0.768953
3.27273 -0.894509 -0.893689 -0.894496
4. -0.575048 -0.572322 -0.575008
4.72727 0.00760887 0.0101156 0.00765285
5.45455 0.55291 0.555356 0.55245
6.18182 0.795351 0.797314 0.793956
6.90909 0.629724 0.633225 0.630508
7.63636 0.165313 0.168418 0.162068

Table 4: Comparison between the obtained result by Hosoya and Clique polynomials with ADM
(Daftardar & Jafari (2005)) when α = 0.95 in the interval [0, 8] for Example 5
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Figure 4: Comparison between approximate solution of the ADM (Black Line) and the presented
method based on Hosoya polynomial (Red Circles) for Example 5

5 Conclusion

In this paper, we have solved Bagley-Torvik and fractional oscillation equations using a numerical
methods based on Hosoya and Clique polynomials. In this method, we approximate the solution
of the governing equation by a finite series with the known basis functions (Hosoya and Clique
polynomials). To obtain unknown coefficients we used collocation points. The method is simple
and efficient. It might be used for solving system of fractional PDE and fractional variational
problems. Mathematica has been used for computation.
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