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1.      Introduction  

 

Practicing engineers face many issues and challenges on design and seismic 

simulation of liquid storage tanks. The liquid storage tanks are important components of 

lifeline and industrial facilities. Ground-supported cylindrical tanks are used to store a 

variety of liquids  water for drinking and firefighting, crude oil, wine, liquefied natural 

gas, etc. Failure of tanks, following destructive earthquakes, may lead to environmental 

hazard, loss of valuable contents, and disruption of fire-fighting effort. Inadequately 

designed or detailed tanks have suffered extensive damage in past earthquakes that has 

resulted in disastrous effects (see Jung et al., 2006; Malhotra, 1997; Ru-De, 1993; 

Sanchez-Sanchez  et al., 2004). 

Liquid sloshing near free surfaces can damage roofs and upper shells of storage 

tanks. High stresses in the vicinity of poorly detailed base anchors can rupture the tank 

wall. Base shears can overcome friction causing the tank to slide.  

Early simulations of the liquid sloshing problem relied upon constructing 

mechanical analogies that comprise pendulums or spring  mass elements whose 

parameters are designed to simulate the resultant dynamic pressure loads imparted on a 

tank during sloshing are presented in (Degtyarev et al., 2015; Degtyarev et al., 2016). 

Housner (Degtyarev et al., 2015) obtained classical solutions for impulsive and 

convective parameters of ground supported rectangular and circular tanks (under 

horizontal accelerations). The work was further extended to analyze elevated water 

tanks (Degtyarev et al., 2016). The tanks walls were considered rigid. It should be noted 

that engineering procedures for seismic analysis and design of storage tanks are often 
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based on the Housner multicomponent spring-mass analogy (Degtyarev et al., 2015). 

The analogy allows the complex dynamic behaviour of the tank and its contents to be 

considered in a simplified form. The principal modes of response include a short period 

impulsive mode, with a period of around 0.5 seconds or less, and a number of longer 

period convective (sloshing) modes with periods up to several seconds. For most tanks, 

it is the impulsive mode that dominates the loading on the tank wall. The frequency of 

the first convective mode is usually much less than the impulsive one, and the higher 

order convective modes can be ignored. Later Veletsos and Yang (Veletsos & Yang, 

1976) considered the effect of flexibility of cylindrical tanks. 

Comprehensive reviews of the phenomenon of sloshing, including analytical 

predictions and experimental observations were done in the work of Abramson 

(Abramson, 1966) and Ibrahim (Ibrahim, 2005). Ibrahim also suggested in (Ibrahim, 

2005) that exact solutions for the linear liquid sloshing are limited to regular tank 

geometries with straight walls, such as rectangular and upright-cylindrical containers. 

Note that fluid-free-surface natural frequencies and mode shapes for two- and three-

dimensional rectangular tanks have been obtained by Abramson (Abramson, 1966) and 

Ibrahim (Ibrahim, 2005) using the method of separation of variables. Owing to 

difficulties associated with this classical method for analysis of linear slosh in most 

practical tank geometries (e.g., horizontal cylinders, spherical tanks), several other 

methods have been developed for linear slosh analysis. 

Since analytic solutions do not exist for tanks and reservoirs with complicated 

geometrical shapes, in addition to the analytical methods, numerical methods have been 

employed for solutions of linear boundary value problems of liquid sloshing. The 

dynamic analysis of shell structures is often performed by use of finite element 

programs (Jung et al., 2006). 

Ru-De (Ru-De, 1993) presented a finite element analysis of linear liquid slosh in 

an upright cylindrical tank under a lateral excitation. Arafa in (Arafa, 2006) developed a 

finite element formulation to investigate the sloshing of liquids in partially filled rigid 

rectangular tanks undergoing base excitation. Hydro-elastic oscillations of rectangular 

plates, resting on Pasternak foundation and interacting with an ideal incompressible 

liquid with a free surface, are studied in (Kutlu et al., 2012). 

But such 3-D nonlinear finite element analysis, including the contained fluid as 

well as the foundation soil, and elasticity of the shell walls is complex and extremely 

time consuming. Several simplified theoretical investigations were also conducted, and 

other numerical methods were elaborated. Some of these studies have been used as a 

basis for current design standards.  

Faltinsen and Timokha (Faltinsen & Timokha, 2012) developed a linear 

multimodal method to study the two-dimensional liquid slosh in a horizontal cylindrical 

tank. Based on the linear multimodal approach, the free-surface elevation and velocity 

potential were expressed by series of the natural sloshing modes. This reduced the 

associated linear boundary value problem to a set of ordinary differential equations. 

McIver (McIver, 1989) also solved the potential flow equation for the free liquid 

sloshing in two-dimensional cylindrical and spherical containers using the conformal 

mapping technique and reported the natural frequencies in terms of liquid filling level. 

Ergin and Ugurlu (Ergin & Ugurlu, 2004), investigated the effects of different 

boundary conditions on the response behaviour of thin circular cylindrical shell 

structures fully in contact with flowing fluid using finite and boundary element 

methods. 
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The adequate definition of the fluid free-surface needs to be tracked using 

alternate methods such as the volume-of-fluid method This method was developed by 

Kim and Lee (Kim & Lee, 2003) and Kim et al. (Kim et al., 2003) on the basis of 

fractional volumes of liquid in a cell, which can be used to identify the position of the 

free-surface. 

The viscous effects on sloshing frequencies were studied in (Bauer & Chiba, 

2007) 

To damp the liquid motion and prevent instability a lot of slosh-suppression 

devices have been proposed. Such devices are used to reduce structural loads induced 

by the sloshing liquid, to control liquid position within a tank, or to serve as deflectors. 

These devices include rigid or elastic ring baffles of various sizes and orientation, 

rectangular plates submerged into a fluid-filled tank, different plates partly covering the 

free surface. The selection and design of suppression systems require quantitative 

knowledge of the slosh characteristics. 
In practice, the effect of baffles usually can be seen after the baffle has been 

installed. But often this experimental work is too expensive. So developing 

computational methods for qualified numerical simulation is a very topical issue. One of 

the pioneering papers in the area was written by Miles (Miles, 1958). 

The linear sloshing in a circular cylindrical tank with rigid baffles has been 

studied by many authors in the context of spacecraft applications. Experimental and 

numerical results were reported in Watson (Watson & Evans, 1991). 

Hasheminejad and Mohammadi (Hasheminejad & Mohammadi, 2011) employed 

the conformal mapping technique to study the effect of surface-touching horizontal side 

baffles, bottom mounted vertical baffle and surface piercing vertical baffle in cylindrical 

containers under lateral excitations. The study showed that a long pair of surface-

touching horizontal side baffles have considerable effect on the natural sloshing 

frequencies while the bottom mounted vertical baffle was not recommended as an 

effective anti-sloshing device. A surface-piercing vertical baffle, however, was found to 

be efficient for controlling the liquid sloshing under high fill levels. The same 

conclusion was also drawn by Hasheminejad and Aghabeigi (Hasheminejad & 

Aghabeigi, 2009, 2011, 2012) where elliptical tanks with the same baffle configurations 

were considered.  

Cho et al. (Cho & Lee, 2004; Cho et al., 2005) and Arafa (Arafa, 2006) developed 

a finite element formulation for linear liquid slosh in two-dimensional baffled 

rectangular tanks. Also finite element method was applied in (Arafa, 2006; Cho & Lee, 

2004; Cho et al., 2005) to examine numerically the damping effects of disc-type elastic 

baffle on the dynamic characteristics of cylindrical fuel-storage tank boosting with uniform 

vertical acceleration. 

Askari et al. (Askari et al., 2011) developed an analytical method to investigate 

the effects of a rigid internal body on bulging and sloshing frequencies and modes of a 

cylindrical container partially filled with a fluid using the Rayleigh quotient, Ritz 

expansion, and Galerkin method. Askari and Daneshmand (Askari & Daneshmand, 

2009) proposed finite element method using Galerkin method to analysis coupled 

vibrations of a partially fluid-filled cylindrical container with a cylindrical internal 

body. 

The effects of baffles on the natural sloshing frequencies were also investigated 

by Gedikli and Erguven (Gedikli & Erguven, 2003) using a variational boundary 

element method (BEM). Gedikli and Erguven (Gedikli & Erguven, 1999) also reported 
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seismic responses for an upright cylindrical tank with a ring baffle using BEM and 

superposition of modes. The major contribution of these works was the significant 

reduction of computational cost compared to other numerical methods such as the finite 

element method. Gedikli and Erguven in (Gedikli & Erguven, 1999, 2003) used BEM to 

investigate the sloshing problem using Hamilton method and evaluated the influence of 

baffle size and location on natural frequencies of upright rigid cylindrical tank. 

So then boundary integral equations have been widely used for the solution of a 

variety of problems in engineering. This approach has certain advantages. In the basic 

equations the functions and their derivatives will be defined on the domain boundaries 

only. That allows reducing the problem dimension. This method gives new qualitative 

possibilities in modeling dynamic coupled problems.  

Though BEM formulations have provided robust solutions to engineering 

problems, the resulting discretized systems are typically dense and non-symmetric, thus 

entailing increased computational cost especially when compared to domain 

discretization methods. It was the reason that multi-domain methods, or domain 

decomposition methods based exclusively on boundary elements have also appeared for 

both interior and exterior boundary value problems (Brebbia, 1984; Crotty, 1982; Rigby 

and Aliabadi, 1995). The main idea of multi-domain is in dividing the original domain 

into smaller ones (sub-domains or macro-elements). In each domain the BEM 

formalism is employed. Fictitious (interface) boundaries are involved to delimit the 

domains when necessary and will be described in terms of pressure and velocity similar 

to solid boundaries. Continuity equations are written on these fictitious boundaries. 

Then the BEM algebraic equations are established for each sub-domain; and the global 

system of equations is formed by assembling results of all sub-domains in terms of the 

equilibrium and consistence conditions over common interface nodes. The Blocked 

Equation Solvers (Crotty, 1982; Rigby & Aliabadi, 1995) are proposed to obtain the 

solutions of these sparse systems of algebraic equations. 

The multi-domain BEM is especially effective at numerical simulation of tanks 

with baffles. 

When liquids slosh in closed containers, one can observe the multiple 

configurations (modes) in which the surface may evolve. Commonly, the different 

modes can be defined by their wave number  (number of waves in the circumferential 

direction) and by their mode number n. 

Although baffles are commonly used as the effective means of suppressing the 

sloshing magnitudes, the only few studies have assessed the role of baffle design 

factors. The size and location effects of a baffle orifice on the sloshing has been 

reported in only two studies devoted rectangular Popov et al (Popov, 1993) and generic 

Guorong et al. (Guorong & Rakheja, 2009) cross-section tanks. 

It should be noted that anti-slosh properties of baffle designs have been 

investigated through laboratory experiments by using small size tanks of different 

geometry Lloyd et al. (Lloyd et al., 2002). 

The overview of the research on the topic (Bermudez & Rodrigues, 1999; 

Guorong & Rakheja, 2009;  Jung et al., 2006; Lloyd et al., 2002) demonstrates that the 

dynamic response of liquid-containing structures can be significantly influenced by 

vibrations of their elastic walls in interaction with the sloshing liquid.  

In (Degtyarev et al., 2015, 2016;  Gnitko et al., 2016, 2017; Strelnikova et al., 

2016;  Ventsel et al., 2010)  the authors developed an approach based on using the 

coupled finite and boundary element method to the problem of natural vibrations of the 



E. STRELNIKOVA et al.: FREE AND FORCED VIBRATIONS OF LIQUID… 

 

 
19 

 

fluid-filled elastic shells of revolution, as well as to the problem of natural liquid 

vibrations in the rigid vessels. But in (Degtyarev et al., 2016; Gnitko et al., 2016; 

Strelnikova et al., 2016) the only rigid vessels were under consideration. In (Ventsel et 

al., 2010) the fluid-structure interaction was considered without including the sloshing 

effects, and in (Degtyarev et al., 2015; Gnitko et al., 2017) the effects of sloshing and 

elasticity of walls were considered separately.  

This paper is summarizing the authors’ efforts in the area. We consider here free 

and forced liquid vibrations in cylindrical, conical and spherical tanks with and without 

baffles, carry out the numerical simulation of elasticity effects, and mutual influence of 

sloshing and elasticity of tank walls on the frequencies. 

 

2. Problem statement  

 

Consider a coupled problem of dynamic behavior of an elastic shell of revolution 

partially filled with a liquid under a short-time impulsive load. Also free and forced 

vibrations of such shells are under consideration.  

Suppose that the fluid-filled elastic shell of revolution of an arbitrary meridian has 

internal baffles installed to damp the liquid sloshing. The shell is of uniform thickness 

h, and height L, made of homogeneous, isotropic material with elasticity modulus E, 

Poisson's ratio  and mass density s. The shell structure and its sketch are shown in 

Fig. 1.  

 

    

 

Figure 1.  Shell structure with an internal baffle and its sketch. 

Denote the wetted part of the shell surface through  and the liquid free surface as 

S0. The liquid volume is divided here into two domains 1 and 2 by the surface 

SbafSint , where Sbaf is a baffle surface, Sint  is an interface surface (Biswal et al., 1984), 

see Fig.1. The shell surface  consists of four parts, bafbot21 SSSS ww  . Here 

S1 and S2 are lateral surfaces of first and second fluid domains, respectively, and Sbot is a 

surface of the tank bottom.  

Let U  321 ,, UUU  denote the vector-function of shell displacements. Consider 

at first stage the free vibrations of the shell without a liquid (the empty shell). For the 

problems of free vibrations we assume that the time dependent shell displacements are 

given by  

 321 ,,);exp( uuuti  uuU  
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Here  is the vibration frequency; the time factor )exp( i  will be omitted further 

on. After the separation of the time factor, the vibrations of the shell without a liquid are 

described by the system of three partial differential equations 

3,2,1,
3

1

2 


juuL j
i

iij , 

where ijL are linear differential operators of the Kirchhoff - Love shell theory Levitin et 

al. (Levitin & Vassiliev, 1996). 

 A finite element method was applied in (Ravnik et al., 2016; Ventsel et al., 2010) 

to evaluate the natural frequencies k  and modes ku , Nk ,1 of the shell of revolution 

without a liquid. After forming the global stiffness L  and mass M matrices, the 

following equation of motion for the shell containing fluid was obtained in (Ravnik et 

al., 2016; Ventsel et al., 2010): 

QnUMLU  dp ,              (1) 

where n is an external unit normal to the shell wetted surface, a term pd n gives the fluid 

dynamical pressure upon the shell, normal to its surface,  tQQ   is a vector of 

external load.  

To model the fluid motion, a mathematical model has been developed based on 

the following hypotheses: the fluid is incompressible, the motion of the fluid is 

irrotational and inviscid, only small vibrations (linear theory) need to be considered. So 

a scalar velocity potential Φ(x,y,z,t) whose gradient represents the fluid velocity can be 

introduced.  

The fluid pressure  tzyxpp ,,,  acting on the wetted shell surface is obtained 

from the linearized Bernoulli’s equation for a potential flow, Lamb (Lamb, 1993). 

t
pgzppgz

t
p ldlsl


















 ;;0 , 

where g is the gravity acceleration, z is the vertical coordinate of a point in the liquid, l 

is the liquid density, ps and  pd  are static and dynamic components of the fluid pressure, 

p0 is for atmospheric pressure. 

Assuming the flow to be inviscid and irrotational, the incompressible fluid motion 

in the 3D tank is described by the Laplace equation for the velocity potential  

02  .     (2) 

To determine this potential a mixed boundary value problem for the Laplace 

equation is formulated in the double domain 12 (Fig. 2). The non-penetration 

condition on the wetted tank surfaces   is following [56]: 

t

w










n
,  nU,w .    (3) 

Let function  yxt ,,  be the free surface elevation. The kinematics and dynamic 

boundary conditions on S0  can be expressed as follows (Gnitko et al., 2016): 

0;
0

0

0 








S

S

pp
tn

.    (4) 

https://en.wikipedia.org/wiki/Horace_Lamb
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To apply the multi-domain approach we divide the fluid domain into two sub-

domains 1 and 2, shown in Fig. 2. Here we introduce the artificial interface surface 

Sint. Let bafbot11 SSS   and baf22 SS   are the shell surfaces contacting with a 

liquid in sub-domains 1 and 2. Then boundaries of sub-domains 1 and 2 are 

int11 S  and 02 S 2 . 

 
                            a)                                                             b) 

Figure 2. Fluid sub-domains 

 

Denote by 1, 2, 0 the potential values in nodes of 1, 2 and S0, respectively. 

The fluxes on 1, 2 are known from the no-penetration boundary condition as 21,ww , 

and on the free surface the unknown flux is denoted as 0q . The potential and flux 

values on the interface surface Sint will be unknown functions ji and jq , 

2,1,int  jS j ,  and we have (Brebbia et.al., 1984) 

2112 ; qqii                   (5) 

Equations (1), (2) are solved simultaneously using the shell fixation conditions 

relative to U, boundary conditions (3)-(5), relative to  and the following expressions 

for the dynamical component of the liquid pressure on elastic walls: 

t
p ld




 ),( nP . 

To define modes of free harmonic shell vibrations coupled with liquid sloshing, 

we represent displacements of the fluid-filled tank as U=ufexp(it). Here  and uf  are 

natural frequencies and vibration modes of the fluid-filled shell structure.  

 

3.      The mode superposition method for coupled dynamic problems 

 

Consider the vibration modes of the fluid-filled tank in a form 





N

k
kkc

1

uU ,      (6) 

where  tcc kk   are unknown coefficients, and uk  are eigenmodes of the empty tank. 

In other words, the mode of vibration of the fluid-filled tank is determined as a linear 

combination of eigenmodes of the empty shell structure. Note that the following 

relationships are fulfilled (Ventsel et.al., 2010): 

kjjkkkk  )),((,)()( 2
uuMuMuL .   (7) 

Hence 

kjkjk  2)),(( uuL ,      (8) 
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where  k is the k-th frequency of the empty tank vibrations. Equations (7), (8) show 

that the abovementioned vibration modes have to be orthonormalized with respect to the 

mass matrix. 

Consider the potential Φ as a sum of two potentials 21  , as it was done 

by Degtyarev et al in (Degtyarev et al.,2015).  

The series for potential Φ1 can be written as 

 



N

k
kk tc

1
11  . 

Here time-dependant coefficients ck(t) are defined in equation (6). To determine 

functions 1k the following boundary value problems are formulated: 

01  k , k
k w




n

1 , 0
0

1 
Sk ,  nu ,kkw  , Nk ,1   (9) 

The solution of boundary value problems (9) was done by Ventsel et al in 

(Venstel et al., 2010). Thus the dynamic analysis of elastic shells of revolution with a 

liquid, neglecting the gravity force, is formulated in terms of the functions U and 1. 

The above functions satisfy the system of differential equations (1), (2) the no-

penetration condition and the lack of the pressure on a free surface, as well as the 

conditions of the shell fixation. The solutions of the boundary value problems (9) can be 

represented in the symbolic form as  kk i uH1 , where  kuH  is the inverse 

operator of the hydrodynamic problem (Ventsel et.al., 2010).  

Suppose that    tiCtc kk  exp , where  is an own frequency of the shell with a 

fluid. Based on the equations (1), (2), (9) we obtain 

    



N

k
jkkljkjkjk CC

1

22 ,uuH .   (10) 

The above equation represents a generalized eigenvalue problem. Solving this 

problem yields the natural frequencies  of the vibrations of the elastic shell conveying 

fluid, but without the gravity effects.  

When the potential 2 is known, the low frequency sloshing modes will be 

obtained. To determine the potential 2 we have a problem of fluid vibrations in a rigid 

shell including gravity effects.  

Use the expansion  



M

k
kk td

1
22

 , where dk.(t) are unknown coefficients, 

functions 2k  are natural modes of the liquid sloshing in the rigid tank. To obtain these 

modes the following boundary value problems are considered: 

02  k ; ;02 




n

k  
t

g
t

S

k

S

k















0
0

22 ;0
n

, Nk ,1       (11) 

The zero eigenvalue obviously exists for problem (11), but we exclude it with the 

help of the following orthogonality condition: 

00
2

0





 dS
S

k

n
 

Differentiate the third equation in relationship (11) with respect to t and substitute 

there the expression for t  from the forth one of (11). Suppose 
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   zyxezyxt k
ti

k
k ,,,,, 22 


 and obtain the next conditions on the free surface for 

each mode 2k  with the sloshing frequency k: 

Mk
g

k
kk ,1,2

2
2 








n
.    (12) 

It leads to the following eigenvalue problems 

02  k ; ;02 




n

k    ,2

2

2
k

kk

g









n
MkdS

S

k ,1,002

0

 .  (13) 

Solving these problems yields the sloshing frequencies k. and modes 2k.  

So to solve the free vibration problem for an elastic shell of revolution coupled 

with liquid sloshing it is necessary to determine three systems of basic functions: modes 

of liquid in rigid shell under force of gravity; own modes of empty shell; modes of 

fluid-filled elastic shell without including the force of gravity. 

Thus, the problem under consideration involves the following steps. 

First, it is necessary to obtain the sloshing frequencies and modes k2  using rigid 

wall assumption.  

Second, we obtain the natural frequencies k  and modes ku  of the empty tank 

with elastic walls. It would be noted that the Kirchhoff-Love shell theory is employed 

here because of considering the thin shells, but for defining basic functions ku  one can 

involve another shell theory.  

Then we define the free vibration frequencies and modes k1  of the elastic tank 

without considering effects of sloshing.  

Finally, for the sum of potentials 21   the following expression can be 

written  

   



M

k
kk

N

k
kk tdtc

1
2

1
1

 .         (14) 

The unknown function  takes the following form: 

   
 









M

k

k
k

N

k

k
k

n
td

n
tc

1

2

1

1 .    (15) 

So, the total potential  satisfies the Laplace equation and non penetration 

boundary condition  

0 ; 
t

w

S 








1n
 

due to validity of relations (11),(13). Noted that  also satisfies the condition 

tn S 








0

 

as a result of representation (15). 

Satisfying the condition 

0

0






s

gz
t

 

on the free surface, one can obtain the next equality 
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When functions k1 and k2  are defined, we substitute them in eqns (1),(4) and 

obtain the system of ordinary differential equations as it was done in (Gnitko et al., 

2017).  








 














 
 

N

k

M

k
kkkkl

N

k
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N

k
kk tdtctcMtcL

1 1
21

11

)()()()(  uu ;.  (16) 

0
1 1

2

21

1
2 




  

 
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k

M

k
kkk

k
k
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k
kk d

n
cgd . 

The first equation here is valid on the wetted surface of the shell and the second 

one – on the free surface of liquid. 

Considering the result of dot product of first equation in (16) by uj and second one 

by j2 , taking also into account relationships (7),(8) and orthogonality of natural modes 

of fluid vibrations in rigid vessel, we come to the next set of N+M second order 

differential equations to determine unknown coefficients    tdtc kk , : 

   






   
 

N

k

M

k
jkkjkkljjj wtdwtctctc

1 1
21

2 ,)(,)()()(   (17) 

      0, 2

2
1

1














 



tdg
n

tcgtd jjj
k

N

k
kj

  

To define coupled modes of harmonic vibrations we represent the time-dependant 

unknown coefficients as  

    ti

kk

ti

kk eDtdeCtc   ; ,   (18) 

where  is an own frequency, and kk DC ,  are unknown constants. 

Taking into account equations (18), one can obtain that equations (17) can be 

expressed as 

     NjwDwCCC
N

k

M

k
jkkjkkljjj ,1,0,,

1 1
2

2

1

222 






   
 

 (19) 
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  Introducing the following matrixes and vectors 

;
...

;
...

2

1

2

1






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
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    NjkwppP jkkjkj ,1,;,; 1  ; 

   kjjkjk wbbB ,; 2 ;   MjNk
n

aaA j
k

jkjk ,1;,1;,; 2
1 













 , 

we come to the next eigenvalue problem 

0222   BDPCCHEC ll ; 

02  DHgACED . 
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 Let also introduce for simplicity vectors and matrix of doubled dimension 

MN   











D

C
X ; 




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

 


E

BPE
H

0

22
; 



















HgA

H
G

0
. 

   It brings us to the following eigenvalue problem 

  02  XHG .    (20) 

 So free vibration analysis of an elastic shell coupled with liquid sloshing is 

reduced to the solution of generalized eigenvalue problem (20) where both elasticity and 

gravity effects are taken into account (Degtyarev et al., 2015). It would be noted that 

hereinbefore we did not assume that the shell considered is a shell of revolution only. 

The effective numerical procedure for solution of this eigenvalue problems using the 

single and multi-domain boundary element methods (BEM) has been developed in 

(Gnitko et al., 2016; Ravnik et al., 2016).  

 

4.      Reducing to the system of one-dimensional integral equations 

 

To define functions k1  and k2  we use the boundary element method in its direct 

formulation (Brebbia et al., 1984). Dropping indices 1k and 2k one can obtain the main 

integral equation in the following form 

  dS
PP

dS
PP

qP
SS 00

0

11
2







 

n
.  (21) 

Here 0SS  , points P and P0 belong to the surface S. The value 0PP   

represents Cartesian distance between the points P and P0. In doing so, the function  

defined on the wetted tank surface  presents the pressure, and the function q defined on 

the free surface S0, is the flux, n /q . 

The basic procedure is to start with the standard boundary integral equation for 

potential (21), replace Cartesian coordinates (x, y, z) with cylindrical ones (r, , z), and 

integrate with respect to , taking into account that 

   00
2

0
2
0

2
0 cos2  rrzzrrPP , 

where points P and P0 have the following coordinates  

   0000 ,,;,,  zrPzrP . 

Furthermore we represent unknown functions as Fourier series by the 

circumferential coordinate  

        ,...2,1;2,1;2,1;cos,,,;cos,,,  kjizrzrzrwzrw iiii

jkjkkk
,  (22) 

where  is a given integer (the number of nodal diameters). In this case, the solution is 

independent of the angular coordinate , and the three-dimensional problem is reduced 

to a two-dimensional one in the radial coordinate r and the axial coordinate z. 

Let  be a generator of the surface . Using (21), (22) we have obtained the 

following system of singular integral equations for unknown functions  and q in 

problem (9): 
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Letting 0  in expressions (23), we obtain the standard elliptic first and second 

kind integrals. 

The system of singular integral equations for mixed boundary value problems (11) 

has been obtained in (Gnitko et al., 2016).  

To define potentials 2 we introduce as in (Gnitko et al., 2016) next integral 

operators: 

1
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Then the boundary value problem (13) takes the form  

  00

2

1 /  CBgA ; 10 SP  ;   0

2

01 /2  FgED ; 00 SP  . 

After excluding function 1 from these relations, we obtain the eigenvalue 

problem and its solution gives natural modes and frequencies of liquid sloshing in the 

rigid tank 

gFBDAECDA /;0)()( 2

0

1

0

1   . 

It should be noted that there are two types of kernels in the integral operators 

introduced above, namely 

    .;
1

,;
1

, 0

00








  PdS

PP
SBdS

PP
SA

SS
n

   (24) 

At integration with respect to  one can conclude that the internal integrals in (24) 

are complete elliptic integrals of first and second kinds. As the first kind elliptic 

integrals are non-singular, one can successfully use standard Gaussian quadratures for 

their numerical evaluation. For second kind elliptic integrals we have applied here the 

approach based on the characteristic property of the arithmetic geometric mean AGM 

(a,b) (see Cox David, 1984). The above-mentioned characteristic property consists in 

following: 
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 To define AGM(a,b) there exist the simple Gaussian algorithm, described below 
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babaAGM


     (25) 

It is a very effective method to evaluate the elliptic integrals of the second kind. 

Convergence 
810 nn ba  is achieved after 6 iterations (namely, 6n  in (25)). 

 So we have the effective numerical procedures for evaluation of inner integrals, 

but integral equations (23) involve external integrals of logarithmic singularities and 

thus the numerical treatment of these integrals will also have to take into account the 

presence of this integrable singularity. Here integrands are distributed strongly non-

uniformly over the element and standard integration quadratures fail in accuracy. So we 

treat these integrals numerically by special Gauss quadratures (Brebbia et al., 1984)  

and applying technique proposed in (Naumenko & Strelnikova, 2002).   

The solution of system (23) is independent of the angular coordinate , and the 

three-dimensional problem is reduced to a two-dimensional one in the radial coordinate 

r and the axial coordinate z. Using dependence  rzz  , we finally reduce the system of 

singular integral equations to a one-dimensional one. 

So 3-D problem of determining the pressure and free surface elevation is reduced 

to solution of the one-dimensional  system of singular integral equations. 

 

5.       Multi-domain approach 

 

To estimate the liquid vibrations in the presence of the baffle, we use the multi-

domain method (boundary super-elements). In doing so, we introduce an "artificial" 

interface surface Sint (Brebbia et al., 1984; Gnitko et al., 2016; Gnitko et al., 2017), 

divide the region filled with the liquid into two parts 21; , bounded by surfaces Sbot, 

S1, Sbaf, Sint and S2, Sbaf, Sint, S0 and  shown in Fig. 2. Let bafbot11 SSS   and 

baf22 SS   are the surfaces of the shell contacting with a liquid in sub-domains 1 

and 2. Then boundaries of sub-domains 1 and 2 are int11 S  and 02 S 2 . 

Denote by 1, 2, 0 the potential values in nodes of 1, 2 and S0, respectively, and by 

w1 , w2 the values of function  nU,w . The fluxes on 1, 2 are known from the no-

penetration boundary condition as 21,ww and on the free surface the unknown flux is 

denoted as 0q . The potential and flux values on the interface surface Sint will be 

unknown functions ji and jq , 2,1,int  jS j , and we have the following 

compatibility conditions  

2112 ; qqii  .     (26) 
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Consider the boundary value problem for determining the potential 1. 

Introducing 1

~
S = 1 , 2

~
S =Sint, 3

~
S = 2 , 4

~
S =S0 allows us to obtain matrixes 

    4,1,,
~

,
~

;
~

,
~

 jiSSBBSSAA jiijjiij . By using the multi-domain approach to 

determine the potential 1 the next system of integral equations in the operator form 

was obtained in (Gnitko et al., 2017): 
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i
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;; 20034132233233132  PqBqBwBAA i   (27) 
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It would be noted that compatibility conditions (26) are taking into account in 

system (27). As a result of solving equations (27), we have 

Qw ,       
2

1,

2

1

2

1
;;




jiijiiii Qw Qw , 

where ijQ are obtained in [26]. So for each 1k the pressure on the surface  will be 

defined by formulae  

           baf

2

1

1

12bot11 ;;; SPPPtcpSSSPPtcp kkklk

i

kklk   . 

The boundary value problem for determining the potential 2 with multi-domain 

BEM (MBEM) was solved by Gnitko et al in (Gnitko et al., 2016). 

Hereinafter the results of numerical simulation are described. In Section 6 the 

convergence of proposed method is shown. Sections 7-10 are devoted to liquid sloshing 

in rigid shells, Sections 11-12 present results of fluid-structure interaction including 

both sloshing and elasticity effects. 

 

6.       Comparing with analytical solution and convergence 

 

As it was mentioned above, for vibration analysis of elastic shells it is necessary 

to determine three systems of basic functions. One of them is represented by free 

vibrations modes of the liquid in the rigid shell under the force of gravity. So the first 

stage of our research is connected with the liquid vibrations in the rigid shells. We 

consider here rigid spherical, cylindrical and conical shells with and without baffles. 

The initial 3D problem is reduced to solution of the one–dimensional system of singular 

integral equations in the form (23). In Fig. 3 the drafts of shells are shown with 

discretized geometry based on BEM.  

In Fig. 3 the following designation are introduced: N0 is the number of boundary 

elements along the free surface radius; Nw is the number of boundary elements along the 

shell wall; Ninf is the number of boundary elements along the interface surface; Nbaf is 

the number of boundary elements along the baffle; and Nbot is the number of boundary 

elements along the shell bottom. 

To validate the proposed method the rigid cylindrical is considered. The first set 

of calculations is therefore to determine the requisite number of boundary elements for a 

precise determination of the natural frequencies. 
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Figure  3.  Drafts of shells and discretization 

 

We consider liquid sloshing in the rigid cylindrical shell. For testifying the 

proposed numerical algorithm we use the analytical solution (Abramson, 2000) that can 

be expressed in the next form:  

,..2,1,tanh
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 H
R

z
R

r
R

J kkk
k

1

2 coshcosh .       (28) 

Here R is the shell radius, H is its height, values k  are roots of the equation

  0
 xJ , where  xJ  is Bessel function of the first kind, k, 2k are frequencies and 

modes of liquid sloshing in the rigid cylindrical shell. The numerical solution is 

obtained by using the BEM as it was described beforehand. 

Consider the rigid circular cylindrical shell with a flat bottom, without baffles, and 

having the following parameters: the radius and height are R = 1 m, and H=1m. Table 1 

below provides the numerical values of the natural frequencies of liquid sloshing for 

nodal diameters  =0 and  =1 obtained by proposed numerical method for different 

numbers N0, Nw, and Nbot and analytical values received by formula (28). Here we 

choose equal numbers N0 =Nw = Nbot because radii of the free surface and bottom, and 

the height of the wetted part of the are equals to 1m. So we consider the following sizes 

of one-dimensional boundary elements according to numbers N0=Nw=Nbot: 0.04m; 0.02 

m, and 0.01m. 

 

Table 1. Slosh frequency parameters gn /2 of the fluid-filled rigid cylindrical shell 

 

 BEM 
n=1 n=2 n=3 n=4 n=5 

 

 

0 

N0 Nw Nbot 

25 25 25 3.8289 7.0163 10.1761 13.3152 6.47089 

50 50 50 3.8285 7.0159 10.1735 13.3243 6.47066 

100 100 100 3.8281 7.0156 10.1732 13.3233 6.47060 

Analytical solution 3.8281 7.0156 10.1734 13.3236 6.47063 

 

 

1 

N0 Nw Nbot n=1 n=2 n=3 n=4 n=5 

25 25 25 1.6590 5.3301 8.5385 11.7071 14.8684 

50 50 50 1.6579 5.3297 8.5372 11.7082 14.8655 

100 100 100 1.6573 5.3293 8.5366 11.7066 14.8635 

Analytical solution 1.6573 5.3293 8.5363 11.7060 14.8635 
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The results of Table 1 testify convergence of proposed BEM. In should be noted 

that the accuracy 
410  has been achieved here for N0 =Nw = Nbot = 100. So further 

we consider boundary elements with length near 1% of the characteristic size. 

In Fig. 4 the distributions of first three sloshing modes for  = 0 on the free 

surface are shown. The solid lines denote modes obtained by analytical expression (28) 

at z = H. The lines pointed with circles and squares denote numerical solutions at N0 

=Nw = Nbot = 100. 

 

 
 

Figure 4. Numerically and analytically obtained modes 

Fig. 4 also demonstrates good agreement between numerical and analytical data.  

 

7.      Cylindrical shells with and without baffles 

 

The study of free vibration characteristics of the rigid cylindrical shell interacting 

with the liquid is presented here. It is supposed that =0,1 in equation (22), i.e. we 

consider both axisymmetric and non- axisymmetric modes.  

Consider the circular cylindrical shell with a flat bottom and having the following 

parameters: radius is R = 1 m, the thickness is h = 0.01 m, the length L = 2 m. The fluid 

filling level is denoted by H. The baffle is considered as a circle flat plate with a central 

hole (the ring baffle), fig. 5. The vertical coordinate of the baffle position (the baffle 

height) is denoted as H1 (H1 < H). The interface surface radius is denoted as Rint and we 

also have 21 HHH  . So the baffle radius is intbaf RRR  . 

The numerical solution is obtained by using the BEM as it is described 

beforehand. In present numerical simulation we used 100 boundary elements along the 

bottom (Nb), 120 elements along wetted cylindrical parts (Nw), and 100 elements along 

the radius of free surface (N0). At the interface and baffle surfaces we used different 

numbers of elements depending on radius of the baffle. In numerical simulations we 

consider different values both for Rint and H1. We used for comparison and validation 

the analytical solution (Ibrahim, 2005) that can be expressed by formulae (28). 

To validate our multi-domain BEM approach we also have calculated the natural 

sloshing frequencies at H1=0.5m, H1=0.9m, and with Rint=0.7m, H=1.0m. The 

comparison of results obtained with proposed MBEM and the analytically oriented 

approach presented by I. Gavrilyuk et al. in (Gavrilyuk et al., 2008) is shown in Table 2. 
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Figure 5. Cylindrical shell with internal baffle and its sketch 

 

Table 2. Comparison of numerical results for g/22  , =0. 

 

baffle position method n=1 n=2 n=3 n=4 

H1=0.5 MBEM 3.756 7.012 10.176 13.328 

(Gavrilyuk et al., 2008) 3.759 7.010 10.173 13.324 

H1=0.9 MBEM 2.278 6.200 9.609 12.810 

(Gavrilyuk et al., 2008) 2.286 6.197 9.608 12.808 

 

These results have demonstrated a good agreement and validated the proposed 

multi-domain approach. In all tables we have compared the frequency parameters  

g/22   of the problems described beforehand. 

The three first modes of liquid vibrations for  =0 are shown on Fig.6. Here we 

consider Rint=0.2m and the height of baffle installation H1=0.9m. 

Here numbers 1,2,3 correspond to the first, second and third sloshing modes. The 

combination of Rint=0.2m and H1=0.9m brings to frequencies’ maximal decreasing. 

From Figure 6 one can conclude that modes of vibrations of baffled and un-baffled 

tanks are similar, and numerical values do not differ significantly.  

Consider =1. In this case values k  are roots of the equation (see the handbook 

of  I.S. Gradshteyn and I.M Ryzhik, (Gradshteyn & Ryzhik, 2000)) 

 

      xJxJxJ 201 2  .    (29) 

Table 3 hereinafter provides the numerical values of the frequencies parameters of 

liquid sloshing for nodal diameters  =0 and H=1.0m. The numerical results obtained 

with proposed MBEM are compared with those received using formulae (20), (21). 

http://www.babla.ru/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/significant
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Figure 6. Modes of vibrations of un-baffled and baffled tanks 

 

Table 3. Comparison of analytical and numerical results,  =1 

Modes n=1 n=2 n=3 n=4 n=5 

MBEM 1.750 5.332 8.538 11.709 14.870 

Analytical solution, 

(Gradshteyn & 

Ryzhik, 2000) 

1.750 5.331 8.536 11.706 14.864 

 

We also have calculated the natural sloshing frequencies for =1 at H1=0.5m, H1= 

0.9m, and with Rint =0.7m. The comparison of results obtained with proposed MBEM 

and the analytically oriented approach presented by I. Gavrilyuk et al  (Gavrilyuk et al., 

2008) has been demonstrated in Table 4. 

 
Table 4. Comparison of analytical and numerical results, =1 

Position  method n=1 n=2 n=3 n=4 

 H1=0.5 MBEM 1.3663       5.2941       8.5359      11.7097      

(Gavrilyuk et al., 2008) 1.3662       5.2940       8.5357      11.7092      

H1=0.9 MBEM 0.7078       4.5066 8.1947 11.5556 

(Gavrilyuk et al., 2008) 0.7079       4.5068 8.1945 11.5550 

 

The three first modes of liquid vibrations are shown on Fig. 7. Here we consider 

the ring baffle with  Rint=0.2m and the height of baffle installation H1=0.9m.  

Curves with numbers 1, 2, 3 correspond to the first, second, and third sloshing 

modes. These results demonstrate that modes of vibrations of baffled and un-baffled 

tanks at =1 differ more significantly than those at =0. 

Results presented here may serve as the basis for designing liquid containers 

subjected to external excitations whose frequencies may be close to the lowest natural 

frequency of the free surface. 

 

http://www.babla.ru/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/significant
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Figure 7. Modes of vibrations of un-baffled and baffled tanks, =1 

 

8.      Conical shell with and without baffles 

 

Conical shells in interaction with a fluid have received a little attention in 

scientific literature in spite of the usage of thin walled conical shells is of much 

importance in a number of different branches of engineering. In aerospace engineering 

such structures are used for aircraft and satellites. In ocean engineering, they are used 

for submarines, torpedoes, water-borne ballistic missiles and off-shore drilling rigs, 

while in civil engineering conical shells are used as containment vessels in elevated 

water tanks. The difficulty of using the analytical methods arises due to the fact that 

walls are not parallel to the axis of symmetry. 

Boundary element method retains its advantages in this case. 

We consider both V-shape and Ʌ-shape conical tanks with radius R1=1.m, and 

=/6, Fig. 8. Note, that for V-shape tank R1 is the free surface radius, whereas for Ʌ- 

shape tank R1 is radius of the bottom, and for V-shape tank R2 is radius of bottom, 

where as for Ʌ-shape tank R2 is the free surface radius. 

If R1, R2 and  are known quantities, than the corresponding value of H can be 

easy found as    cot21 RRH . 

     

 

Figure 8. Baffled conical shells of Ʌ- and V shapes 
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In Table 5 the results of numerical simulation of the un-baffled tanks frequencies 

are presented for  =0, 1, 2 and different values of R2. Our numerical simulation was 

dedicated to the frequencies gkk /22   for  =0, 1 ,2 and k =1 because these are the 

lowest natural frequencies that give the essential contribution to the hydrodynamic load. 

Table 5. Frequency parameter gkk /22  of V – shape and Ʌ- – shape conical tanks 

 V – shape Ʌ – shape 

R2 0.2 0.4 0.6 0.8 0.9 0.2 0.4 0.6 0.8 0.9 

 =0, k =1 

(Gavrilyuk 

et al., 

2008) 

3.386 3.386 3.382 3.139 2.187 24.153 10.014 6.665 4.550 2.683 

MBEM 3.389 3.390 3.391 3.192 2.200 20.027 10.034 6.669 4.545 2.678 

 =1, k =1 

(Gavrilyuk 

et al., 

2008) 

1.304 1.302 1.254 0.934 0.542 11.332 5.629 3.515 1.661 0.726 

MBEM 1.305 1.307 1.259 0.954 0.574 11.303 5.626 3.481 1.651 0.732 

 =2, k =1 

(Gavrilyuk 

et al., 

2008) 

2.263 2.263 2.255 2.015 1.361 17.760 8.967 5.941 3.724 1.923 

MBEM 2.265 2.270 2.269 2.048 1.394 17.939 8.965 5.941 3.726 1.951   

 

The comparison of results obtained by proposed method with data of  I. Gavrilyuk 

et al (Gavrilyuk et al., 2008) is presented here. The results are in good agreement except 

the data for Ʌ- shape tank with for  =0 and R2=0.2m. But it was noted in (Gavrilyuk et 

al., 2008) that in this case the low convergence was achieved using the proposed there 

analytical method. Next, we have carried out the numerical simulation of the natural 

frequencies of liquid sloshing for tanks with baffles. Both V-shape and Ʌ-shape baffled 

tanks are under consideration. We consider tanks of height H=H1+H2=1.0m with 

different baffle positions H1. We use R1 = 1.0m and R2=0.5.m for both type of tanks (see 

Fig. 8). 

In Table 6 the results of numerical simulation are presented for  =0, 1 and 

different baffle positions, described by the height H1. Here we consider four eigenvalues 

for =0,1. Radius of the conical shell at the baffle position is denoted as Rb, and the free 

surface radius is Rint (Fig. 8). First, we have obtained the natural frequencies of V-shape 

and Ʌ-shape conical tanks without baffles. It corresponds to values H1= H2 =0.5m, 

Rint/Rb=1. The values of H1 and H2 can be arbitrary chosen, but H1+H2=1.0m. Then we 

have put baffles at the different positions H1=0.5m and H1=0.8m and considered the 

different sizes of baffles, namely Rint/Rb=0.5 and Rint/Rb=0.2.  

The results obtained show different behaviour of decreasing frequencies for V-

shape and Ʌ-shape conical tanks. For Ʌ-shape tanks the baffle positions and their sizes 

are not affected essentially on the values of frequencies. For V- shape tanks the effects 

of baffle characteristics is more considerable. 

It would be noted also that the first harmonic frequencies are lower than 

axisymmetric ones both for V-shape and Ʌ-shape conical tanks. 

The analytical numerical treatment for conical containers may require choosing a 

coordinate system where most of boundary conditions may be exactly satisfied. The 
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proposed BEM does not require any transformations of initial equations and involving 

the special coordinate system.  

 
Table 6. Natural frequencies of V- shape and Ʌ-shape conical tanks with baffles 

 

n 1 2 3 4 1 2 3 4 

 

H1 

 

H2 

 

Rint/Rb 

V-shape Ʌ-shape 

 =0 

0.5 0.5 1 3.466 6.681 9.845 12.99 7.985 14.37 20.70 27.01 

0.5 0.5 0.5 3.408 6.668 9.843 12.99 7.968 14.37 20.69 27.01 

0.5 0.5 0.2 3.405 6.635 9.843 12.99 7.960 14.37 20.69 27.01 

0.8 0.2 0.5 2.527 6.387 9.724 12.92 7.344 14.25 20.66 26.99 

0.8 0.2 0.2 2.443 6.059 9.565 12.88 7.113 14.20 20.65 26.99 

  =1 

0.5 0.5 1 1.416 4.997 8.206 11.37 4.424 11.09 17.46 23.79 

0.5 0.5 0.5 1.228 4.974 8.197 11.37 4.192 11.06 17.46 23.79 

0.5 0.5 0.2 1.172 4.943 8.196 11.37 4.037 11.06 17.45 23.79 

0.8 0.2 0.5 0.815 4.742 8.003 11.20 3.128 10.78 17.42 23.77 

0.8 0.2 0.2 0.630 4.191 7.849 11.23 2.529 10.66 17.36 23.75 

 

9.      Partially filled rigid spherical baffled and un-baffled shells  

 

Spherical tanks partially filled with liquid are difficult to analyze the free-liquid 

natural frequencies and mode shapes using analytical methods. The difficulty arises due 

to the fact that walls are not straight. Liquid spattering and sloshing in spherical tanks 

was studied in papers (Faltinsen & Timokha, 2012; Kulczycki et al., 2016). A 

characteristic feature of spherical tanks is the change in radius of a free surface with 

changing in a filling level. There exist known analytical solutions for almost completely 

filled tanks with small radii of the free surface, the so-called "ice fishing problems" 

formulation. The effect of baffles on sloshing frequencies was studied by Biswal et al. 

(Biswal et al., 1984). 

In this paper we consider the problem of fluid vibrations in the rigid spherical 

shells with and without baffles. To reduce the sloshing in the shell, an internal baffle is 

installed, Fig. 9. 

   

 

Figure  9. Spherical fuel tank with internal baffle 

We denote here the wetted surface of the shell by Sw= 21 SS  , S1 and S2 are used 

when the baffled shell is under consideration.  

Consider the spherical shell of radius R = 1 m, partially filled with the ideal 
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incompressible fluid, with the filling level H. Numerical analysis is carried out for 

 99.1/2.0  RH  and various   3,0 . 

Both single (SBEM) and multi-domain (MBEM) boundary element methods are 

applied here. The boundary elements with constant approximation of unknowns inside 

elements are used. In SBEM there are 200 elements along the spherical surface (Nw) and 

150 elements along the free surface. In MBEM we divide the computational domain 

into two parts by the artificial interface surface at Hh 5.0int   using 100 boundary 

elements in each sub-domain along the spherical surface and 150 elements along the 

free surface. We use practically the same mesh to find a numerical approximation of 

low eigenvalues for the so called “ice-fishing problem”. In this problem, formally, we 

should consider an infinitely wide and deep ocean covered with ice, with a small round 

fishing hole. Sloshing in such “containers” was studied by McIver (McIver, 1989). We 

approximate this infinite case using the spherical tank with the very small round hole on 

its top. It allows us to compare our numerical results with those obtained in papers 

(Kulczycki et al., 2016; McIver, 1989). 

In Tables 7-8 we compare our results obtained by using SBEM and MBEM with 

those obtained in (Kulczycki et al., 2016) – (McIver, 1989) for axisymmetric (=0) and 

non-axisymmetric (=1) modes. Four first frequencies ( 4,1m ) are evaluated for each 

. Here we consider different filling levels h1. The value h1/R1=1.99 corresponds to the 

ice-fishing problem. Obtained results and results of Faltinsen et al (Faltinsen & 

Timokha, 2012) and Kulczycki et al. (Kulczycki et al., 2016) are very close. 

Different levels of fluid filling are considered, including H/R = 1.99, that 

corresponds to «ice-fishing problem», (McIver, 1989).  

Table 7. Axisymmetric slosh frequencies parameters gn /2 of the fluid-filled spherical shell. 

 

m 

 

method 

Filling level H, m  

H =0.2  H =0.6 H =1.0 H =1.8 H =1.99 

1 
 (Kulczycki et al., 2016) 3.8261   3.6501          3.7451         6.7641      29.0500 

 (Cho & Lee, 2004)   3.8261   3.6501          3.7451         6.7641      29.2151 

MBEM   3.4034         3.5455         3.7294         6.6098      30.7081       

SBEM   3.8314         3.6510          3.7456         6.7665      29.1811          

2 
(Kulczycki et al., 2016)   9.2561   7.2659        6.9763       12.1139       51.8122 

(McIver, 1989)   9.2561   7.2659        6.9763       12.1139       52.0467 

MBEM   9.2636        7.2893        6.9796       12.0008      52.9393 

SBEM   9.2686        7.2684        6.9780      12.1205      52.0255 

3 
(Kulczycki et al., 2016) 14.7556          10.7443      10.1474      17.3960       74.2909 

(Cho & Lee, 2004) 14.7556          10.7443      10.1474      17.3960       74.5537 

MBEM 14.9214      10.7483      10.1496      17.3136      75.3139 

SBEM 14.7763      10.7502      10.1512      17.4086      74.5547 

4 
(Kulczycki et al., 2016) 20.1187     14.1964    13.3041 22.6579 96.6207 

(Cho & Lee, 2004) 20.1187     14.1964    13.3041 22.6570 96.9560 

MBEM 20.2066 14.2023    13.3083 22.5962   97.7771 

SBEM 20.1498 14.2056    13.3110  22.6777 96.9021 

 

The results of calculations with SBEM and MBEM are close, in some cases 

SBEM gives more accuracy compared with MBEM, but the matrix size in SBEM is 

twice larger compared with MBEM. If un-baffled tanks are at low filling levels, it is 

preferable to use SBEM. 
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Table 8. Non-axisymmetric slosh frequencies parameters gn /2  of the fluid-filled spherical shell 

m method Filling level H, m 

H =0.2  H =0.6 H =1.0 H =1.8 H =1.99 

1 (Kulczycki et al., 

2016),  

1.0723 1.2625 1.5601 3.9593 18.9838 

(McIver, 1989) 1.0723 1.2625 1.5601 3.9593 19.1582 

MBEM 1.1034 1.2777 1.5638 3.9606 19.1603 

SBEM 1.0723 1.2626 1.5603 3.9508 19.1130 

2 (Kulczycki et al., 

2016) 

6.2008 5.3860 5.2755 9.4534 41.3491 

(McIver, 1989) 6.2008 5.3860 5.2755 9.4534 41.7683 

MBEM 6.1227 5.3534 5.2749 9.4582 41.5327 

SBEM 6.2090 5.3697 5.2764 9.4538 41.5333 

3 (Kulczycki et al., 

2016) 

11.8821 8.9418 8.5044 14.7548 63.5354 

(McIver, 1989) 11.8821 8.9418 8.5044 14.7548 64.0323 

MBEM 11.9650 8.9529 8.5062 14.7648 63.9483 

SBEM 11.8981 8.9429 8.5069 14.7574 63.8783 

4 
(Kulczycki et al., 

2016) 

17.3581 12.4234 11.6835 20.0224 85.9166 

(McIver, 1989) 17.3584 12.4234 11.6835 20.0224 86.3001 

MBEM 17.4540 12.4276 11.6863 20.0394 86.2972 

SBEM 17.3842 12.4291 11.6884 20.0278 86.2034 

 

From results of Tables 7-8 one can observe sloshing frequencies behaviour with 

increasing the fluid depth H. If radius R0 of the free surface increases, then the 

frequencies decrease. In Table 9 the frequency parameters of axisymmetric sloshing are 

compared for cylindrical and spherical shells via different ratios H/R0; where R0 is 

radius for cylindrical shells. For defining the frequencies of cylindrical shells we use 

formulae (28).   

Table 9. Axisymmetric slosh frequencies parameters gn /2  of the fluid-filled cylindrical and  

spherical shells 

 

H, m 0.2  0.6 1.0 1.8 1.99 

R0 0.6 0.9165 1.0 0.6 0.1410 

H/R0 0.3333  0.6546 1.0 3.0 14.106 

cylinder 5.4649 3.8959 3.8281 6.3861 27.1752 

sphere 3.8261 3.6501        3.7451       6.7641      29.2151 

 

Frequency changing of cylindrical shells has similar non-monotonic behaviour.  

Fig.10 below demonstrates the spatial wave patterns for =0, 1, n=1,2,3 at   

H=1.8m; R=1m. 

Considering our approximate natural sloshing modes one can observe how free 

surface profiles change with the liquid depth. 

 These results are illustrated in Fig. 11 for the three lowest eigenvalues of the 

mode  = 0. Here numbers 1,2,3,4 correspond to the different filling levels, namely H 

=1.0m; 0.2m; 1.8m; 1.9m, respectively.  

 



 JOURNAL OF MODERN TECHNOLOGY & ENGINEERING, V.3, N.1, 2018 

 

 
38 

 

 
 

Figure 10. Spatial wave patterns for =0,1 

 

 
 = 0, n=1 

 

 

 = 0, n=2 
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 = 0, n=3 

Figure 11. The radial wave profiles  = 0, m=1,2,3, for different liquid depths H 

 

We also consider non-axisymmetric modes,  = 1, because the frequencies 

corresponded to these modes are the lowest ones. 

 

 
  = 1, n=1 

 

 

 
 = 1, n=2 
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 = 1, n=3 

 
Figure 12. The radial wave profiles  = 1, m=1,2,3, for different liquid depths H 

It would be noted that mode shapes presented in Fig. 12 have different magnitudes 

in their picks, because these modes are not normalized. There dividing by R0 is applied 

for comparison with results O.M. Faltinsen and A.N. Timokha (Faltinsen & Timokha, 

2012) where namely such non-normalized modes are presented. 

In the spherical tank with 0 < H/R< 0.5 the lowest mode presents a spatial wave 

pattern that look like inclination of an almost flat free surface. Increasing the liquid 

depth yields more complicated free surface profiles. 

Next, the rigid spherical tank of radius R1=1m filled to the depth H=1.4m is 

considered. The inner periphery of the tank contains a thin rigid-ring baffle. The baffle 

position is hbaf=1m. The different annular orifices in the baffle are considered. Radii of 

these orifices are radii Rint of the interface surfaces. The first three frequencies for mode 

=1 are evaluated for radii Rint =1.0m, Rint=0.7m, and Rint=0.2m. Note that Rint =1.0m 

correspond to the un-baffled tank. These frequencies are presented in Table 5. 

Table 10.  Vibrations of the tank with a baffle, frequency parameter 2
/g  

m 2
/g 

Rint=1.0 m Rint=0.7m Rint= 0.2 m 

1 2.1232 2.0435 1.4234 

2 5.9800 5.9723 5.8405 

3 9.4789 9.4785 9.4567 

Fig. 13 shows the first three forms of fluid vibrations in the spherical shell at =1 

with baffles. 

   

      

 

Figure 13.  Modes of liquid vibrations in the baffled spherical shell. 
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When the baffle is installed, the mode shape becomes almost flat. The presence of 

the baffle has affected drastically only on the lower frequencies. Also one can see that 

small baffles (when Rint is relatively large) do not affect the lower frequencies. 

 

10.     Impulse impacts on reservoirs  

 

Consider the rigid cylindrical shell with the flat bottom partially filled with the 

liquid. The tank parameters are following: radius is R = 1 m, thickness is h=0.01m, 

length is L = 2 m, filling level is H =1.0m. 

We determine pressure p upon shell walls from the linearized Cauchy-Lagrange's 

integral by the following formula (Lamb, 1993): 

 

   xtapgzp stl  0 , 

Here  tas  is a function characterizing external influence (a horizontal seism or an 

impulse). The radial load is suddenly applied to cylindrical surface of the tank 

as(t) = Q0a(t), where Q0 = 10 МPа – distributed pressure,  

  ,
,0

,1
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Having defined the basic functions 2k, substitute them in expressions for velocity 

potential  
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and for the free surface elevation 
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Then substitute the received relations in the boundary condition on the free 

surface 

  0
0


sst xtag .    (31) 

As in cylindrical system of coordinates there is  cosrx , we will be interested 

only in the first harmonica, i.e. in a formula (22) we only consider  =1. We come to 

the following equation on the surface S0 
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Due to validity of relation (31) on the surface S0 the equality given above takes 

the form 

                              0
1

2
2

1
2  



rtadd s

M

k
kkk

M

k
kk

 .   (32) 

Accomplishing the dot product of equality (32) by  Mll ,12   and having used 

orthogonality of own modes (Gavrilyuk, 2006) we receive the system of ordinary 

differential equations of the second order 

      MkrFFtadd kkkkkskkk ,1;,/,;0 222
2  .  (33) 
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Suppose that before applying the horizontal impulse the tank was at the state of 

rest. Then we have to solve (33) under zero initial conditions. The operational method is 

applied here to the solution of system (33). 

The following values for coefficients   Mktdk ,1,   are obtained: 


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Substituting these coefficients in relation (30) one can obtain the time-history of 

the free surface elevation. 

It would be noted that dynamics of both baffled and un-baffled tanks under 

impulse or seismic loads is governed by equations (33). 

In Fig. 14 the free surface elevation in the point B with r=1.m (see Fig. 5) 

depending on time is shown. 

 

 

 

Figure 14. Time – history of the free surface elevation at the impulse load 

 

 Here the solid line denotes the free surface elevation of un-baffled tank, and 

dotted green line is for the tank with the ring baffle with m3.0baf R installed at the 

height .01 H 8m. It would be noted that the amplitude of the free surface elevation 

does not decrease by time, but has a periodic behaviour. The reason is in limitations of 

the proposed model for structural-vibration analysis that consists in classical dynamics 

of un-damped systems (equations (16), as and equation (1) are without damping 

matrixes). This essentially implies that all the system coordinates execute harmonic 

oscillation without decreasing by time.  

 However the results testify that installation of baffles lead to decreasing both 

frequencies of the liquid vibrations and the level of the free surface elevation. 
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11.    Elasticity effects  

 

In this section the elasticity of both bottom and walls of tanks is taken into 

account. Here the third system of basic functions is implied. 

Modes of fluid-filled elastic shell without including the force of gravity 1k are 

calculated by the boundary element based method developed in (Ravnik et al., 2016; 

Ventsel et al., 2016).  

It would be noted that in (Ventsel et al., 2016) the vibrations of elastic hemisphere 

without sloshing effects were estimated. 

Here we considered the cylindrical shell with a flat bottom, R = 1 m, h = 0.01 m, 

L = 2 m, Young’s modulus E = 2·10
5
 MPa, Poisson’s ratio ν = 0.3, the material’s 

density is  = 7800 kg/m
3
, the fluid density l = 1000 kg/m

3
, the filling level H=1.0 m. 

The baffle position was H1=0.5m, and the baffle radius Rb was variable, the value Rb=0 

corresponds to the un-baffled tank. 

The shell is assumed to be pin-connected over its contour and boundary 

conditions are following: 0 uuu zr  to z = 0 and r = R (clamped in the point A, 

Fig. 5). The own modes of the empty shell vibrations (second system of basic functions) 

are obtained using the finite element method as it was described in (Ventsel et al., 

2016).  

In Table 11 the results of numerical simulation of axisymmetric frequencies (m is 

mode number) for cylindrical shells with elastic baffles of different radii are presented. 

Table 11. Axisymmetric frequencies of elastic cylindrical shells with baffles, Hz 

 

m 

Empty elastic shell Fluid-filled elastic shell 

Rb=0 Rb=0.2 Rb=0.5 Rb=0.8 Rb=0 Rb=0.2 Rb=0.5 Rb=0.8 

1 23.233 23.233 23.234 23.234   7.9259    7.5901      5.5213      1.7874 

2 91.1011 91.1014 40.4818 24.4105 43.3566     42.350     15.172 9.7932 

3 205.252 191.172 91.1015 91.1015 117.034     116.02 43.769 45.914 

4 365.795 205.253 205.253 100.789 230.316   138.95 119.14 52.908 

5 392.787 365.795 213.551 205.253 392.787 239.18 168.05 119.77 

 

From the results obtained here one can conclude that the frequencies of fluid-

filled shell vibrations are differ drastically from the frequencies of empty ones. The 

value Rb=0 corresponds to the un-baffled tank, and all frequencies in this case 

correspond to the vibrations of shell’s walls. When Rb=0.2m then frequency f1=192.172 

Hz appears corresponded to first mode of baffle vibrations. When baffle with Rb=0.5m 

is installed, we observe appearance of two modes corresponded to baffle vibrations with 

frequencies f1=40.4818Hz and f2=213.551 Hz (first and second modes of baffle 

vibrations). At increasing the baffle radius to Rb=0.8m one can see decreasing the baffle 

frequencies values to f1=24.4105Hz and f2=100.789Hz. The fifth mode of the shell 

without baffles a torsion one, and it does not affect on fluid-structure interaction 

because an ideal fluid produces only a normal pressure on a moistened body. 

It should be noted that installing the baffles lead to appearance of new modes with 
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frequencies that are lower than in the case of baffle absence.  

The baffle does not affect the only first frequency of the empty tank, but it 

presence leads to essential decreasing the frequencies of fluid-filled shells with 

increasing the baffle radius.  

Both elasticity effects and the size of baffles are affected essentially the values of 

natural frequencies. 

 

12.      Vibration analysis of elastic shells coupled with liquid sloshing 

 

 In this section we describe coupled problems of liquid sloshing and structural 

vibrations. 

Consider the clamped-free elastic circular cylindrical shell with a flat bottom (Fig. 

5) and geometrical and physical parameters described above in Section 11. The own 

modes of the empty shell vibrations (second set of basic functions) are obtained using 

FEM as it was described in (Ventsel et al., 2016). Modes of fluid-filled elastic shell 

without including the force of gravity 1k (third system of basic functions) are 

calculated by method developed in (Gnitko et al., 2017; Ravnik et al., 2016). 

To complete numerical analysis we have to obtain the first system of basic 

functions. For this purpose we consider the partially filled rigid cylindrical shell having 

the following parameters: the radius is R = 1 m, the length L = 2 m. The filling level is 

H=1.0 m. The baffle is considered as a circle flat plate with a central hole (a ring 

baffle). The vertical coordinate of the baffle position (the baffle height) is denoted as 

H1. The radius of the interface surface is denoted as Rint, (Fig.5) and 21 HHH  . 

Fig. 15 a),b) demonstrates monotonic dependencies of the first 4 eigenvalues 

denoted over there as F1,F2,F3,F4, via the interface surface radius denoted by Rint at 

different baffle position H1. Both wave numbers =0 and =1 are considered. 
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a) =0 

 
 

 
       

b)  =1   

Figure 15. Eigenvalues versus Rint for H=1m and different H1 

 

From these results one can conclude that graphs of Fi as functions of Rint are 

essentially differ for different i and H1. The presence of the baffle has affected 

drastically the only lower frequencies, although small baffles (when Rint is relatively 

large) do not affect the lower frequencies. This conclusion corresponds to results of 

Gavrilyuk et al (Gavrilyuk et al., 2006).  
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It would be noted that the values of frequencies both for =0 and =1 on the left 

vertical border of these graphs coincide with theoretical values for tanks with solid 

baffles (baffles without holes) at the same values of baffle position H1. Here we have 

the boundary value problem for the two-compartment tank where the lower 

compartment is fully-filled with the liquid. But for this compartment we have the 

boundary value problem with zero Newman boundary condition. It leads to the 

ambiguous solution, but we have known the constant potential due to the known 

solution for the upper compartment where the mixed boundary value problem for the 

cylindrical shell can be solved analytically. The liquid above the baffle behaves like a 

sloshing one while the liquid below behaves like a rigid one. Physically, this implies 

complete insulation of the upper fluid layers against inter-domain flows. On the right 

border of the graphs the values of frequencies coincide with ones obtained for the un-

baffled tank.  

When all three systems of basic function are defined, we substitute them in 

Equations (19) and come to solution of eigenvalue problem (20) that describes 

vibrations of the elastic shell coupled with liquid sloshing. 

Table 12 provides the numerical values of natural frequencies of vibration for 

empty and fluid-filled cylindrical tanks without baffles. Here coefficients nS, nL indicate 

numbers of modes of the shell and liquid involved in coupled vibrations, n is the 

number of the coupled mode. For numerical simulation we have used here four shell 

modes and five sloshing modes. 

Table 12. Frequencies of empty and fluid-filled tanks without baffles, Hz 

 =0  =1 

n nS nL 
Empty 

elastic 

tank 

Fluid-

filled 

tank 

Un-

coupled 

nS nL 
Empty 

elastic 

tank 

Fluid-

filled 

tank 

Un-coupled 

1  1  6.1193 6.1281  1  4.0330 4.1433 

2 1 1,2 23.233 7.6591 7.9259  2  7.2316 7.2316 

3  2  8.2991 8.3172  3  9.1508 9.1508 

4  3  9.9958 9.9958  4  10.715 10.716 

5  4  11.441 11.441  5  12.071 12.071 

6  5  12.723 12.723 1,2  48.520 21.902 21.955 

7 2,1  91.101 43.308 43.3566 2,1  139.70 79.712 79.719 

8 3,2  205.25 117.03 117.033 3,2,1  232.44 178.42 178.42 

9 4,3,2  365.79 230.31 230.316 4,3  277.30 210.00 210.00 

Here the sloshing frequencies are n , and we calculate them using the frequency 

parameters gn /2  (see formula (12)). By “Uncoupled” in the Table 12 the value of 

frequencies are denoted that are obtained separately using first and second systems of 

basic functions. The interesting phenomenon here is in appearance of the first shell 

frequency 2=7.6591 Hz among the sloshing ones. 
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The main conclusions here are following. The coupling effect is more essential for 

axisymmetric vibrations. It also would be noted that there exist an interaction between 

liquid and shell vibrations. It is observed for the first shell mode. The supposition about 

spectrum separation of liquid sloshing and elastic structure vibrations is not valid at 

least when the shell bottom is considered as elastic. 

 The results of baffle influence are given in Table 13. The baffle with Rb=0.5m is 

installed at H1=0.5m into the cylindrical shell described above. 

Here numbers n, nS, nL are numbers of coupled mode, elastic shell mode, and 

sloshing mode, respectively. So one can see, which sloshing (nL) and elastic shell (nS) 

modes interfere in each coupled mode (n).  

The results given here show the difference between frequencies of fluid-filled and 

empty shells. 

Table 13. Frequencies of empty and fluid-filled tanks with baffles, Hz 

n nS nL 
Empty elastic tank Fluid-filled tank Uncoupled 

vibrations 

1 1 1 23.234 5.5213 5.2415 

2 1 1  5.9532 6.0012 

3 3 2  8.2991 8.3172 

4 2 3  9.9900 9.9958 

5  4  11.441 11.441 

6  5  12.723 12.723 

7 2 1 40.4818 15.172 15.172 

8 3 2 91.1015 43.769 43.769 

9 4 2 205.253 119.145 119.145 

10 5 2 213.551 168.052 168.052 

11 6 1 365.794 196.125 196.125 

12 7 2 553.183 370.881 370.881 

13 8 3 572.280 401.324 401.324 

 

But with increasing the frequency number this difference become gradually 

smaller. The lowest axisymmetric frequency 1 = 5.5213Hz of the fluid-filled shell 

corresponds to the first mode of the elastic structure. Moreover, this frequency is very 

close to the sloshing frequency 2 = 5.2415Hz. So the frequencies  near 5-6Hz may be 

considered as most dangerous for the considered cylindrical shell. It will be the reason 

for the loss of stability. 

The results testify that the supposition about spectrum separation of liquid 

sloshing and vibrations of the elastic structure is not valid. 



 JOURNAL OF MODERN TECHNOLOGY & ENGINEERING, V.3, N.1, 2018 

 

 
48 

 

Fig. 16 demonstrates different configurations of axisymmetric mode shapes of 

fluid-filled cylindrical shell with the ring baffle. Numeration of the modes n= 1,2, … is 

the same as in Table 13.  

The first mode corresponds to vibrations of the shell bottom coupled with the first 

sloshing mode. Modes with numbers 2-6 are purely sloshing ones. The seventh mode 

describes baffle vibrations; eighth and tenth modes are superposition of the baffle and 

bottom vibrations. Ninth mode describes bottom vibrations. Modes of vibrations of 

vertical walls correspond to higher frequencies (n= 11-13 in Figure 16).  

So coupled analysis of elastic shells vibration and liquid sloshing can reveal the 

complicated nature of fluid-structure interaction that is quite different for distinct tanks’ 

shapes and fluid fillings. 

 

    
       n= 1                  n= 2                n= 3               n= 7                n= 8 

      
          n= 9            n= 10            n= 11                n= 12               n= 13 

 

Figure 16. Mode shapes of fluid-filled cylindrical shall with the ring baffle. 

 

13.    Conclusion 

 

The numerical method based on a coupling the finite element formulation and the 

boundary element method is developed for the analysis of free and forced vibrations of 

shells of revolution with an arbitrary meridian partially filled with the fluid. The elastic 

shell vibrations coupled with liquid sloshing under the force of gravity are considered.  

For solving the free vibration problem for elastic shells of revolution coupled with 

liquid sloshing three systems of basic functions are obtained: modes of liquid in rigid 
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shell under force of gravity; own modes of empty shell; modes of fluid-filled elastic 

shell without including the force of gravity. The representation is introduced for the 

velocity potential as the sum of two potentials: one of them corresponds to the problem 

of fluid free vibrations in the rigid shell and another one corresponds to the problem of 

fluid-filled elastic shell vibrations without including the gravitational component. 3-D 

problem of determining the pressure and free surface elevation is reduced to solution of 

the one-dimensional system of singular integral equations. It is the basic advantage of 

our method based on a combination of the boundary integral equations method, finite 

element method and expansion into Fourier series. The forced vibration problem 

includes the same steps involving the liquid added masses into equations of motion. The 

geometry of tanks can be easy changed without complicated analytical calculations. 

The proposed approach allows us to carry out the numerical simulation of 

frequencies and the level of the free surface elevation for baffled liquid storage tanks 

with baffles of different sizes and with different position in the tank considering liquid 

sloshing and elasticity effects. This gives the possibility of governing the baffle radius 

and its position within the tank at design stage. 

The results of numerical simulation demonstrate that the frequencies of fluid-

filled shell vibrations are differ essentially from the frequencies of empty ones, the 

frequencies of tanks with and without baffles are essentially different. Installing the 

baffle leads to a decrease of the frequencies of vibrations. The supposition about the 

spectrum separation of frequencies of the elastic shell filled with the liquid and sloshing 

frequencies in the rigid shell with the same geometrical characteristics and filling level 

as for the elastic one is not always valid.  

The problem is solved using the one-dimensional boundary and finite element 

methods. This substantially reduces the computer time for the analysis and reveals new 

qualitative possibilities in modeling the dynamic behavior of shell structures. 

The method can be extended to the non-linear sloshing problem involving 

different shells of revolution with two and more annular horizontal baffles. 

About limitations of the method the following can be said. The proposed model 

for structural-vibration analysis does not involve the effects of viscosity and damping. 

The consideration of these effects requires new mathematical models.  
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