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1 Introduction

The use of prime numbers in such a crucial areas as cryptology has further increased the im-
portance of these numbers (Crandall & Pomerance, 2005). For this reason, many studies have
been done for finding prime numbers and distribution of them (Ingham, 1990; Prachar, 1957).
Nowadays, intensive studies on prime numbers continue to be conducted (Tenenbaum & Mendes,
2000; Narkiewicz, 2000).

In many Number Theory Problems, it is necessary to specify the number of prime numbers
in certain intervals. In such cases, we can use the number of composite numbers in this interval
to calculate the number of prime numbers in the desired interval (Granville & Rudnick, 2007).

In order to calculate the number of composite numbers in a certain interval, a calculation
scheme based on the Dynamic Programming Technique has been proposed in our study Nuri et
al. (2019). In our study Nuri et al. (2020), the number of composite numbers in various certain
intervals was analyzed and the relationship between them was determined. The results were
given by making calculations with the suggested methods.

This work is a continuation of our works given in articles Nuri et al. (2019) and Nuri et al.
(2020) and therefore we make use of the notations given there.

The prime-counting function π(x) is the function, counting the number of prime numbers
less than or equal to some real number x.

According to this definition, π (1) = 0, π (2) = 1, π (10) = 4, π (100) = 25, π (pn) = n
where, pn is the n.th prime number.

The theorem that approximately gives how many prime are less than a given real number x
is known as the Prime Number Theorem (Ingham, 1990).
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Theorem 1. (Prime Number Theorem) Let π (x) be the number of primes up to x.
Then,

π(x) ∼ x/lnx.

That is,

lim
n→∞

π(x)

x/lnx
= 1. (1)

The following theorem is obtained as a corollary of this theorem:

Theorem 2.

pn ∼ n · lnn as n→∞. (2)

The Prime Number Theorem was postulated by Gauss in 1792 on numerical evidence. But
it was in 1896 that Hadamard and Charles Jean de la Vallée Poussin independently proved the
theorem (Ingham, 1990).

It shows that x/ lnx is a good approximation to π(x) for sufficiently large numbers x. An
approach better than it, is the function;

li (x) =

∫ x

2

dt

lnt

In this study, a new approach based on the distribution of composite numbers is proposed
to analyze the distribution of prime numbers in a certain interval. For this purpose, the concept
of ν-sequence is defined and the number of composite numbers in the given interval is expressed
as the ν-sequence and the number of prime numbers in the given interval is determined.

The paper consists of the following parts:

Firstly, the history of the Distribution Theory of Prime Numbers is briefly mentioned, then
the definition of the ν-sequence and some of its properties are given. In the next section, an
algorithm is proposed to show the distribution of composite numbers in the given interval by
using the ν-sequence. At the end, experimental calculations made with the proposed method.

2 Notations

N = {1, 2, . . . n, . . .} - Sequence of Natural Numbers.
N = N\ {1} = {2, 3, 4, . . . , n, . . .}.
P = {p1, p2, p3, . . . } = {2, 3, 5, . . .} - Sequence of Prime Numbers.
π(x) - Prime Counting Function.
Mk =

{
m ∈ N | m = k · n, n ∈ N

}
, k ∈ N - The sequence produced by by k, i.e. the sequence

of multiples of k.
Mk = Mk \ {k} , k ∈ N
M = ∪p∈PMp.
π(x) - Composite Number Counting Function.
M = N\P = CoP - Sequence of Composite Numbers.
π (n) = (n− 1)− π(n).
P = N \M = N \(∪p∈PMp) - Sieve of Eratosthenes.
k!! = p1 · p2 · p3 · . . . · pk - Prime Factorial, that is, the product of the first k number of prime
numbers, here pk is the k.th prime number, for example,
8!! = p1 · p2 · . . . · p8 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19.
k!!(−1) = (p1 − 1) · (p2 − 1) · (p3 − 1) · . . . · (pk − 1).
The first k number of prime numbers that subtracted by 1 and their product is found, where pk
is the k.th prime number, for example,
5!!(−1) = (p1−1) · (p2−1) · . . . · (p5−1) = (2−1) · (3−1) · (5−1) · (7−1) · (11−1) = 1 ·2 ·4 ·6 ·10.
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3 On the Distribution of the Prime Numbers

The positive integers other than 1 can be divided into two classes, prime numbers (such as
2, 3, 5, 7) which cannot be factorized, and composite numbers (such as 4, 6, 8, 9) which can. The
prime numbers derive their peculiar importance from the ‘fundamental theorem of arithmetic’
that a composite number can be expressed in one and only one way as a product of prime factors
(Crandall & Pomerance, 2005).

Theorem 3. (Fundamental Theorem of Arithmetic) For each natural number n there is a unique
factorization

n = pa11 · p
a2
2 · . . . · p

ak
k

where exponents ai are positive integers and p1 < p2 < . . . < pk are primes.

Although the series of prime numbers exhibits great irregularities of detail, the general
distribution is found to possess certain features of regularity which can be formulated in precise
terms and made the subject of mathematical investigation.

We shall denote by π(x) the number of primes not exceeding x; our problem then resolves
itself into a study of the function π(x). If we examine a table of prime numbers, we observe at
once that, however extensive the table may be, the primes show no signs of coming to an end
altogether, though they do appear to become on the average more widely spaced in the higher
parts of the table. These observations suggest two theorems which may be taken as the starting
point of our subject. Stated in terms of π(x), these are the theorems that π(x) tends to infinity,
and π(x)/x to zero, as x tends to infinity (Crandall & Pomerance, 2005).

Euclid may have been the first to give a proof that there are infinitely many primes.

Theorem 4. (Euclid Theorem). There exist infinitely many primes.

In 1737, Euler proved that the following series is divergent and showed that prime numbers
are infinite:

∞∑
n=1

1

pn

This proof is based on the following identity (Ingham, 1990):

∞∑
n=1

n−s =
∏
p

(
1 + p−s + p−2s + . . .

)
=
∏
p

(
1− p−s

)−1
(3)

where the products are over all primes p.

Euler’s contribution to the subject is of fundamental importance; for this identity, which
may be regarded as an analytical equivalent of the fundamental theorem of arithmetic, forms
the basis of nearly all subsequent work.

The question of the diminishing frequency of primes was the subject of much speculation
before any definite results emerged. The problem assumed a much more precise form with the
publication by Legendry in 1808 (after a less definite statement in 1798) a remarkable empirical
formula for the approximate representation of π(x). Legendry asserted that, for large values of
x, π(x) is approximately equal to

x

lnx−B
(4)

where lnx is the natural logarithm of x and B a certain numerical constant – a theorem described
by Abel (in a letter written in 1823) as the ‘most remarkable in the whole of mathematics’ Ingham
(1990).

A similar, though not identical, formula was proposed independently by Gauss. Gauss’s
method, which consisted in counting the primes in blocks of a thousand consecutive integers,
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suggested the function 1/lnx as an approximation to the average density of distribution in the
neighborhood of a large number x, and thus∫ x

2

du

lnu
(5)

as an approximation to π (x) . Gauss’s observations were communicated to Encke in 1849, and
first published in 1863; but they appear to have commenced as early as 1791 when Gauss was
fourteen years old. In the interval the relevance of the function (Prachar, 1957) was recognized by
other authors. For convenience of notation it is usual to replace this function by the ‘logarithmic
integral’

li(x) = lim
η−→+0

(∫ 1−η

0
+

∫ ∞
1+η

)
du

lnu
,

from which it differs only by the constant li(2) = 1, 04 . . . .
The precise degree of approximation claimed by Gauss and Legendry for their empirical

formulae outside the interval of tables used in their construction is not made very explicit by
either author, but we may take it that they intended to imply at any rate the ‘asymptotic
equivalence’ of π (x) and the approximating function f(x), that is to say that π (x)/f(x) tends
to the limit 1 as x tends to infinity (Ingham, 1990).

Some calculations with these functions are given in the Table 1.

Table 1: Comparison of π(x) with the functions li(x) and x/(ln(x)− 1)

π π(x) li x π(x)/li x x/(ln x− 1) π(x)/(x/(ln x− 1))

1000 168 178 0,94382 169,269029 0,992502887

10000 1229 1245 0,987149 1217,9763 1,009050832

50000 5133 5167 0,99342 5091,76466 1,008098439

100000 9592 9630 0,996054 9512,10016 1,008399811

500000 41538 41606 0,998366 41246,0825 1,00707746

1000000 78498 78628 0,998347 78030,4456 1,005991948

2000000 148933 149055 0,999182 148053,2 1,005942461

5000000 348513 348638 0,999641 346621,689 1,005456413

10000000 664579 664918 0,99949 661458,971 1,004716889

20000000 1270607 1270905 0,999766 1264922,7 1,004493791

90000000 5216954 5217810 0,999836 5197709,24 1,003702546

100000000 5761455 5762209 0,999869 5740303,81 1,003684682

1000000000 50847478 50849235 0,999965 50701542,4 1,002878326

At first, it is seen from the table that π (x) < li(x) for all values of x. Until recently,
this inequality was thought to be true for all values of x, but in 1914 Littlewood proved that
π (x) > li(x) for some values of x and such values of x are infinitely many (Prachar, 1957).

The first theoretical results connecting π (x) with x/lnx are due to Chebyshev. If there
exists lim(x/ lnx) than it is equal to 1.

Chebyshev proved in 1850 that there are such constants a and A that for sufficiently large
values of x π(x)/(x/lnx) is placed between the constants a and A (Prachar, 1957).

Theorem 5. There are positive numbers a, A such that for all x ≥ 3,

a x

lnx
< π (x) <

A x

lnx

Here a = 0, 92129. . ., A = 1, 0555. . .
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The constants a and A were later narrowed down by some mathematicians (especially by
Silvester) Tenenbaum & Mendes (2000).

The new ideas to supply the key to the solution were introduced by Riemann in 1859, in a
memoir which has become famous, not only for its bearing on the theory of primes, but also for
its influence on the development of the general theory of functions (Mazur & Stein, 2016).

Euler’s identity had been used by Euler himself with a fixed value of s(s = 1), and by
Chebyshev with s as a real variable. Riemann introduced the idea of treating s as a complex
variable and studying the series on the left of (3) by the methods of the theory of analytic
functions (Mazur & Stein, 2016).

This series converges only in a restricted portion of the plane of the complex variable s, but
defines by continuation a single - valued analytic function regular at all finite points except for
a simple pole at s = 1. This function is called ‘zeta function of Riemann’ after the notation ζ(s)
adopted by its author (Tenenbaum & Mendes, 2000).

It was the brilliant leap of Riemann in the mid-19th century to ponder an entity so artfully
employed by Euler,

ζ (s) =
∞∑
n=1

1

ns

but to ponder with powerful generality, namely, to allow s to attain complex values.

The discoveries of Hadamard prepared the way for rapid advances in the theory of the
distribution of primes. The prime number theorem was proved in 1896 by Hadamard himself and
by Charles Jean de la Vallée Poussin, independently and almost simultaneously (Koukoulopoulos,
2019).

Charles Jean de la Vallée Poussin in his study published in 1899 showed that li(x) is a better
approximation to π(x) than the function (4), independent of the value of B, and that the best
value of B is 1 (Prachar, 1957; Koukoulopoulos, 2019).

Finally, in the 1948-1949, the Distribution Theorem of Prime Numbers is proved in an
elementary way, without using the Complex Number Theory, by the P. Erdos and A. Selberg
independently (Tenenbaum & Mendes, 2000).

4 On the ν-sequence

Let A = {a1, a2, a3, . . . } be a sequence.
Define ν-sequence created over the sequence A recursively as follows:

ν1A = 1/a1,

νkA = vk−1A + 1/ak · (1− νk−1A ), k ∈ N ;

In our study Nuri et al. (2020), the ν-sequence was created for the sequence of prime numbers
P = {p1, p2, p3, . . . }, direct and recursive formulas were proposed in order to calculate the
k.th element of this sequence:

ν1P = 1/p1 = 1/2

ν2P= ν1P +
1

p2

(
1− ν1P

)
=

1

2
+

1

3

(
1− 1

2

)
=

4

6

ν3P= ν2P +
1

p2

(
1− ν2P

)
=

4

6
+

1

5

(
1− 4

6

)
=

22

30

ν4P= ν3P +
1

p2

(
1− ν3P

)
=

22

30
+

1

7

(
1− 22

30

)
=

162

210
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A recursive formula to calculate the (k + 1).th element of the ν-sequence for the sequence of P
is as follows:

ν1P = 1/p1 = 1/2 = 1/p1 = c1/e1

c1 = 1, e1 = 2

νk+1
P = ck+1/ek+1, k ∈ N

ck+1 = ck · (pk+1 − 1) + ek

ek = p1 · p2 · . . . · pk = k!!

ck+1 = ck · (pk+1 − 1) + p1 · p2 · . . . · pk = ck · (pk+1 − 1) + k!!

νk+1
P = (ck · (pk+1 − 1) + p1 · p2 · . . . · pk)/(p1 · p2 · . . . · pk · pk+1), k ∈ N

νk+1
P = (ck · (pk+1 − 1) + k!!)/((k + 1)!!), k ∈ N

A direct formula to calculate the (k+ 1).th element of the ν-sequence, for the sequence of P
is as follows:

ν1P = 1/p1 = 1/2

Let r1 = (p1 − 1) /p1 = (2− 1) /2 = 1/2, then ν1P= 1− r1 = 1− 1/2 = 1/2.

νkA = 1− rk, k = 1, 2, 3, . . .

rk = rk−1 · ((pk − 1) /pk) , k = 1, 2, 3, . . .

rk = ((p1 − 1) (p2 − 1) . . . (pk − 1)) / (p1 · p2 · . . . · pk)

rk =

(
k∏
i=1

(pi − 1)

)/(
k∏
i=1

pi

)
= (k!!(−1))/(k!!)

If sequence A is ascending (ak+1 > ak, k ∈ N) and if a1 >1 then followings are true for νkA:

1. νkA <1, k ∈ N

2. νkA >1/a1, k ∈ N

3. lim
k→∞

νkA ≤1

4. Sup {νkA} ≤1

5 On the Distribution of the Composite Numbers

In our study Nuri et al. (2020), the {νkA} sequence created on the sequence P , was used to
calculate the medium density of the composite numbers in the given interval:
Let define an sequence Ak as follows:

Ak =
{
aki ∈ N | aki = k × i, i ∈ N

}
, k ∈ N

Let Ak(n) be the sequence of elements not greater than n of sequence Ak(n).

1 ≤ aki ≤ n, i ∈ N, k ∈ N.

dk(n) = s (Ak(n)) /n, k = 1, 2, 3, . . ..
Let dk(n) = s (Ak(n)) /n, k = 1, 2, 3, . . .
Let dk(n) be density of a sequence Ak in interval [1, n].
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dk = d(Ak) = lim
n→∞

{dk(n)} = lim
n→∞

{s (Ak(n)) /n} , k = 1, 2, 3, . . .

Let dk be a medium density of Ak in a sequence of natural numbers N .

d (Ak) = dk =
1

k
, k ∈ N

Consider the concepts of densities combining several sequences:

Let A(k) =
⋃k
i=1Api .

For example,
for k = 1, A(1) = Api = A2 , for k = 2, A2 = Ap1 ∪Ap2 = A2 ∪A3,

for k = 3, A3 = Ap1 ∪Ap2 ∪Ap3 = A2 ∪A3 ∪A5,

for k = 4, A4 = Ap1 ∪Ap2 ∪Ap3 ∪Ap4 = A2 ∪A3 ∪A5 ∪A7,

for k = 5, A5 = Ap1 ∪Ap2 ∪Ap3 ∪Ap4 ∪Ap5 = A2 ∪A3 ∪A5 ∪A7 ∪A11.

Denote the sequence of elements that are not greater than n of sequence A(k) with A(k)(n).

Density in interval [1, n] for A(k),

d(k)(n) = d
(
A(k)(n)

)
= s

(
A(k)(n)

)/
n,

medium density can be defined as

d(k) = d
(
A(k)

)
= lim

n→∞

{
dk(n)

}
= lim

n→∞

{
s
(
A(k)(n)

/
n
)}

The formulas given below is used to calculate the d(k):

s (A ∪B) = s (A) + s (B)− s (A ∩B)

s (∪ni=1Ai) =

n∑
i=1

s (Ai)−
n−1∑
i=1

n∑
j=i+1

s (Ai ∩Aj) +

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

s (Ai ∩Aj ∩Ak)−

−
n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=j+1

s (Ai ∩Aj ∩Ak ∩Al) +

+
n−4∑
i=1

n−3∑
j=i+1

n−2∑
k=j+1

n−1∑
l=k+1

n∑
t=l+1

s (Ai ∩Aj ∩Ak ∩Al ∩At) +

+ . . .+ (−1)n+1 · s (A1 ∩A2 ∩A3 ∩ . . . ∩An−1 ∩An)

To express d(k) in terms of the ν-sequence, the largest prime pq less than the
√
n is found.

Then νqP= d(q) = d
(
A(q)

)
, will be the middle density of composite numbers in the set of natural

numbers in the interval [1, n]. We can evaluate the number of composite numbers approximately
as n · νqP .

Let denote the number of composite numbers not exceeding x with π. Then,

x→∞, π ∼ x · vqP

Here, q is the index of the largest term pq less than
√
n of the sequence P .

It is obvius that, π (x) = (x− 1)− π(x).

The calculation results for the first 25 prime numbers are given in the Table 2.

As can be seen from Table 2, the deviation of π̃ (x) from π (x) is very small and becomes
smaller as the value of n increases.
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Table 2: Comparison of the results calculated with the ν-sequence with π(n)

n n2 (n+ 1)2 p min {ν × n− π(n)} min {ν × n− π(n)}/n2 max {ν × n− π(n)} max {ν × n− π(n)}/(n+ 1)2

2 4 8 2 0 0 0,5 0,0625

3 9 15 3 -0,3333333 -0,037037037 0,666666667 0,044444444

4 16 24 -0,3333333 -0,020833333 0,666666667 0,027777778

5 25 35 5 -0,4666667 -0,018666667 0,733333333 0,020952381

6 36 48 -0,6666667 -0,018518519 0,533333333 0,011111111

7 49 63 7 -0,2571429 -0,005247813 1,057142857 0,016780045

8 64 80 -0,0857143 -0,001339286 1,314285714 0,016428571

9 81 99 -0,9428571 -0,011640212 1,028571429 0,01038961

10 100 120 -0,8571429 -0,008571429 1,171428571 0,009761905

11 121 143 11 -0,2597403 -0,002146614 1,116883117 0,007810371

12 144 168 -0,7532468 -0,00523088 0,623376623 0,003710575

13 169 195 13 0,55644356 0,003292565 2,282717283 0,011706242

14 196 224 -0,5814186 -0,002966421 2,83016983 0,012634687

15 225 255 -0,3486513 -0,001549562 0,815184815 0,003196803

16 256 288 -0,4045954 -0,001580451 1,718281718 0,005966256

17 289 323 17 0,75924076 0,002627131 3,1060704 0,009616317

18 324 360 -0,4617735 -0,001425227 1,509784333 0,004193845

19 361 399 19 2,27448712 0,006300518 3,497799414 0,008766415

20 400 440 1,45967036 0,003649176 3,419367011 0,007771289

21 441 483 2,01304578 0,00456473 4,131781531 0,008554413

22 484 528 1,06750834 0,002205596 3,027204993 0,005733343

23 529 575 23 2,0568 0,003888091 4,4556 0,00774887

24 576 624 2,1304 0,003698611 4,7316 0,007582692

25 625 675 2,296 0,0036736 4,8604 0,007200593

26 676 728 1,2264 0,001814201 4,2612 0,005853297

27 729 783 0,9012 0,001236214 2,5372 0,003240358

28 784 840 -1,1888 -0,001516327 1,3756 0,001637619

29 841 899 29 2,7 0,003210464 4,854 0,005399333

30 900 960 1,112 0,001235556 3,062 0,003189583

31 961 1023 31 3,776 0,00392924 5,634 0,005507331

32 1024 1088 3,842 0,003751953 6,443 0,005921875

33 1089 1155 3,05 0,002800735 6,323 0,005474459

34 1156 1224 1,564 0,001352941 5,432 0,004437908

35 1225 1295 -0,228 -0,000186122 3,739 0,002887259

36 1296 1368 -0,927 -0,000715278 4,029 0,002945175

37 1369 1443 37 -1,3 -0,000949598 2,65 0,001836452

38 1444 1520 0 0 3,15 0,002072368

39 1521 1599 -0,3 -0,000197239 1,55 0,000969356

40 1600 1680 -0,4 -0,00025 2,95 0,001755952

41 1681 1763 41 5,4908 0,003266389 7,4751 0,004239989

42 1764 1848 2,1454 0,001216213 6,4161 0,003471916

43 1849 1935 43 5,94 0,003212547 9,182 0,00474522

44 1936 2024 5,58 0,002882231 7,088 0,003501976

45 2025 2115 3,64 0,001797531 6,882 0,003253901

46 2116 2208 1,316 0,000621928 6,694 0,003031703

47 2209 2303 47 3,76 0,001702128 6,42 0,002787668

48 2304 2400 3,68 0,001597222 7,14 0,002975

49 2401 2499 3,14 0,001307788 6,86 0,002745098
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50 2500 2600 -0,46 -0,000184 3,16 0,001215385

51 2601 2703 -2,84 -0,001091888 1,14 0,000421754

52 2704 2808 -0,32 -0,000118343 2,66 0,000947293

53 2809 2915 53 9,0378 0,003217444 11,6951 0,004012041

54 2916 3024 6,1083 0,002094753 9,9963 0,003305655

55 3025 3135 3,3265 0,001099669 7,2975 0,002327751

56 3136 3248 -0,0528 -1,68367E-05 4,0543 0,001248245

57 3249 3363 -1,8578 -0,000571807 2,4501 0,000728546

58 3364 3480 -3,3616 -0,000999287 1,9347 0,000555948

59 3481 3599 59 3,2212 0,000925366 6,8058 0,001891025

60 3600 3720 3,954 0,001098333 6,5666 0,001765215

61 3721 3843 61 1,5752 0,000423327 5,4696 0,001423263

62 3844 3968 0,292 7,59625E-05 -0,1976 -4,97984E-05

63 3969 4095 -1,424 -0,000358781 1,9928 0,000486642

64 4096 4224 -4,456 -0,001087891 0,3736 8,8447E-05

65 4225 4355 -5,2896 -0,001251976 -0,8728 -0,000200413

66 4356 4488 -8,528 -0,001957759 -3,8968 -0,000868271

67 4489 4623 67 4,4 0,000980174 9,01 0,001948951

68 4624 4760 5,32 0,001150519 6,81 0,001430672

69 4761 4899 -0,87 -0,000182735 4,87 0,00099408

70 4900 5040 -1,64 -0,000334694 3,01 0,000597222

71 5041 5183 71 7,7852 0,001544376 11,7918 0,002275092

72 5184 5328 5,8484 0,001128164 8,8234 0,001656044

73 5329 5475 73 10,5737 0,001984181 14,15355 0,002585123

74 5476 5624 9,3469 0,001706885 14,81745 0,002634682

75 5625 5775 8,3301 0,001480907 12,33855 0,002136545

76 5776 5928 8,6831 0,001503307 13,69995 0,002311058

77 5929 6083 5,1622 0,00087067 11,64955 0,001915099

78 6084 6240 2,9942 0,000492143 7,22945 0,001158566

79 6241 6399 79 12,431416 0,001991895 14,5690315 0,002276767

80 6400 6560 8,340481 0,0013032 16,3859485 0,002497858

81 6561 6723 7,397525 0,0011275 11,9846785 0,001782638

82 6724 6888 5,991867 0,000891116 9,5702445 0,001389408

83 6889 7055 83 14,011 0,002033822 17,877 0,002533948

84 7056 7224 10,662 0,001511054 16,989 0,002351744

85 7225 7395 7,03 0,00097301 13,881 0,001877079

86 7396 7568 3,452 0,000466739 7,997 0,001056686

87 7569 7743 5,836 0,00077104 9,339 0,001206122

88 7744 7920 2,482 0,000320506 8,643 0,001091288

89 7921 8099 89 8,472 0,001069562 15,1584 0,001871638

90 8100 8280 6,6912 0,000826074 11,2432 0,001357874

91 8281 8463 4,3712 0,000527859 10,0848 0,001191634

92 8464 8648 0,5648 6,67297E-05 6,4128 0,000741536

93 8649 8835 0,7008 8,10267E-05 4,6624 0,000527719

94 8836 9024 -1,1568 -0,000130919 4,7728 0,000528901

95 9025 9215 -2,7216 -0,000301562 1,6416 0,000178144

96 9216 9408 -4,5808 -0,000497049 -0,7056 -7,5E-05

97 9409 9603 97 4,928 0,000523754 10,48672 0,001092025

98 9604 9800 3,73024 0,000388405 7,19808 0,000734498

99 9801 9999 1,92032 0,000195931 6,76512 0,00067658

100 10000 10200 -1,4192 -0,00014192 2,5968 0,000254588
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6 Calculation of π(x)

The most important problem in calculating π(x) is finding the index of the largest prime number
pq smaller than

√
n. Finding these numbers becomes more difficult as x increases.

To overcome this difficulty, instead of the prime number pk, we will use its approximate
value, the number p̃k, which we will call the “shadow” of this prime number.

For large values of k, pk ∼ k · lnx according to the Theorem 2. In order to get the proper
values for small values of k we will determine p̃k with the formula given below.

p̃k = k · (1 + α) · ln(k · (1 + β))

Here, α = 1/k and β = γ · α.
The difference between pk and p̃k decreases as k increases.
To calculate the ν-sequence according to p̃k, we consider the elements of the ν-sequence over

this set and calculate
P̃ = {2, p̃2, p̃3, . . . }

Here, p̃1 is taken as to 2.

The following algorithm is proposed to calculate an approximate value π̃ (x) of π(x):

Algorithm
Step 1. Calculate

√
x.

Step 2. Find the largest p̃k less than
√
x.

Step 3. Calculate π̃ (p̃q) = x ·
(
νq
P̃

+ νq+1

P̃

)
/2

In order to improve the results of the algorithm, in Step 3, vqP and vq+1
P are calculated

according to “p̃q” and “p̃q+1” and their average value is found.

7 Experimental Results

Calculation results of the algorithm are given in Table 3.

It can be seen from Table 3, that the ratio of π̃(n) to π(n) is close to 1 and this ratio decreases
as the value of n increases.

In Table 3, π̃(n) is the average value of π(n) and π̃(n) is the approximate value of the π(n).

π̃(n) = (π(n)1 + π(n)2) /2

π̃(n) = (n− 1)− π̃(n)

8 Conclusion

Table 3 shows the results of our first calculations. In future, making more comprehensive and
more detailed calculations is planned. Results described in the table, we will try to improve by
adjusting the parameters α and β.
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