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Abstract. We present a vibrational spectrum analysis of Auss cluster, with energy (-4.95 eV /atom) having a
group symmetry C1. We have carried out DFTB calculation by using the numerical finite-difference method and
extracted the required force constants. Our calculations have a good agreement with the experimental results, that
is, a thermodynamically very stable structure can not be crystalline, but having a high probability of amorphus.
The lowest energy geometrical structures are being confirmed by comparison (of the nuclei coordination numbers)
of the different axis of rotations at a standard orientation of crystal shape. Moreover, we have accurately predicted
the vibrational frequency range from 1.62 to 298.53 cm ™! at AE = 0. Significantly, the spectrum has shown 10
sets of double state degeneracy and the rest of the 88 spectrum’s are having independent single state degeneracy.
Amazingly, at NVM 101, 102 that gives a pair of degeneracy {238.54, 238.89} ¢m ™" that has occurred within the
range of Mid Infrared MIR, IR-C 3330-200 ¢m~'. Nevertheless, our investigation has revealed that the vibrational
spectrum strongly depends upon the size, shape, and structure, as well as, stretching and bending vibrations of

the atoms.

Keywords: Gold Atomic Clusters, Density-Functional Tight-Binding (DFTB) approach, Finite-Difference Method,
Force Constants (FCs) and Vibrational Spectrum.

Corresponding author: K. Vishwanathan, Faculty of Natural Sciences and Technology, University of Saarland,
66123 Saarbriicken, Germany, Tel.: + 49-0151-63119680, e-mail: vishwa_nathan_-7@yahoo.com

Received: 28 April 2021; Revised: 16 July 2021; Accepted: 5 August 2021; Published: 31 August 2021.

1 Introduction

Dedicated to Honorable Prof. Dr. Rudolph Arthur Marcus (born July 21, 1923) on
the occasion of his 98th birthday, he is a Canadian-born chemist who received the
1992 Nobel Prize in Chemistry “for his contributions to the theory of electron transfer
reactions in chemical systems”.

Marcus theory, named after him, provides a thermodynamic and kinetic framework
for describing one electron outer-sphere electron transfer. He is a professor at Cal-
tech, Nanyang Technological University, Singapore and a member of the International
Academy of Quantum Molecular Science.

As for me, it was the highest privilege that we met each other at the international
Conference on TACC, Gyeongju, S. Korea, 2004 which has inspired me to lay down
my life into Scientific Career.

In general, nanoclusters are interesting because their physical, optical and electronic charac-
teristics are strongly size dependent. Often changing the size by only one atom can significantly
alter the physical chemical properties of the system (Wu et al.l 2016), for that reasons, many new
periodic tables can thus be envisioned classifying differently-sized clusters of the same material
as new elements. Potential applications are enormous, ranging from devices in nano-electronics
and nano-optics (Andres et al., [1996) to applications in medicine and materials.
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Gold colloids not only having some practical application recently, but also, have been used
for centuries to stain glass which has been even used for the study of direct electrochemistry of
proteins (Kamat|, 2002). The main reasons are, gold is a soft metal and is usually alloyed to
give it more strength. In addition to that gold is a good conductor of heat and electricity, and
is unaffected by air and most reagents. Noble-metal (Cu, Ag, and Au) clusters have attracted
much attention in scientific and technological fields because of their thermodynamic, electronic,
optical and catalytic properties in nano-materials (Li et al., [2016; |Zhang et al., [2019)).

The vibrational properties play a major role in structural stability (Garzén & Posada-
Amarillas, 1996; Bravo-Pérez et al., 1999a,b; Sauceda et al., 2012, 2013a,b; Sauceda & Garzon,
2015; Dugan & Erkog, 2008). The structural determination of metal nanoparticles of their vi-
brational (phonon) density of states have been calculated by |Sauceda & Garzon| (2015). Specific
heat capacity is an important thermodynamic property and is directly related to the struc-
tural stability, identification and energy of substances. Most recently, Sauceda et al.| (2013a))
calculated vibrational properties and specific heat of core-shell Ag-Au icosahedral nanoparticles.

Most recently, many researchers have observed that, beyond Au2_51, the low-symmetry core-
shell structures dominate the low-energy clusters, and the hollow-cage structures are unlikely
to exist in larger size due to the strong relativistic effects (Shao et al., |2010). |Zhang et al.
(2019), worked on the lowest-energy geometrical and electronic structures of C’u§81 clusters
which are investigated by density functional calculations combined with a genetic algorithm
based on a many body semi-empirical interatomic potential, the traditional FCC-truncated
Octahedron (OH) and an incomplete-Mackay icosahedron (IMI) are recognized as the two lowest
energy structures (energetically degenerate isomers) but with different electronic structures:
a semiconductor-type with the energy-gap of 0.356 eV for the IMI and a metallic-type with
negligible gap for the OH, which is in good agreement with the experimental results. The electron
affinity and ionization potential of Cuggl are also discussed and compared with the observations
of the ultraviolet photoelectron spectroscopy experiments. The dynamical isomerization of the
OH-like and IMI-like structures of C’uggl is revealed to dominate the premelting stage through
the investigation by the molecular dynamics annealing simulations.

Above all, recent theoretical study of Augsl, Zhao et al. (2013) also suggest a spindle-like
structure of Au;sl, which contains a tetrahedral core. The structures of gold clusters in the size
regime between 36 and 54 atoms have not been confirmed experimentally. In search for such
structural information, the questions are: Is the tetrahedral core so stable that it can be retained
in Au clusters beyond the size Augl? If it is, at what size of Au cluster would the tetrahedral
core transform to a different core? Also, what would the next core structure look like? To answer
some of these questions and to understand the structural growth pattern of medium-sized Au
clusters, they have performed a global structure search of low-energy clusters of Au3_61 to Auggl by
using the basin-hopping (BH) global optimization method (Wales & Scheragal, [1999)) combined
with DFT calculations. The most stable structures are identified by comparing the experimental
PES spectra with the computed electronic density of states of all lowest-lying isomers (Bulusu
et al., |2006; Huang et al., [2009; Li et al., [2003]).

In this study, we focus on the vibrational properties of gold clusters with sizes Augg atoms.
Some general information about global minima gold structures which have been calculated by the
work Dong & Springborg] (2007); Warnke| (2007). The structures were found through a so called
genetic algorithm (GA) in combination with Density Functional Tight-Binding (DFTB) en-
ergy calculations and a steepest descent algorithm permitting a local total energy minimization.
Nevertheless, peculiarly, in our case, we use our numerical finite-difference approach [Dvornikov
(2004) along with density functional tight-binding (DFTB) method and extracted the vibra-
tional spectrums. Overall, for a better understanding and to visualize, the detailed information
is discussed in the results and discussion section.

90



K. VISHWANATHAN: A MEDIUM-SIZED NANOCLUSTERS...

2 Theoretical and Computational Procedure

At first, the DF'TB (Porezag et al., [1995; [Seifert & Schmidt) [1992; [Seifert et al., 1996) is based
on the density functional theory of Hohenberg and Kohn in the formulation of Kohn and Sham.
In addition, the Kohn-Sham orbitals ;(r) of the system of interest are expanded in terms of
atom-centered basis functions {¢,,(r)},

hi(r) =) Cimm(r), m=j. (1)

While so far the variational parameters have been the real-space grid representations of the
pseudo wave functions, it will now be the set of coefficients ¢;,,,. Index m describes the atom,
where ¢,, is centered and it is angular as well as radially dependant. The ¢,, is determined by
self-consistent DFT calculations on isolated atoms using large Slater-type basis sets.

In calculating the orbital energies, we need the Hamilton matrix elements and the overlap
matrix elements. The above formula gives the secular equations

> Cim(Humn — €iSmn) = 0. (2)
m
Here, ¢;,’s are expansion coefficients, ¢; is for the single-particle energies (or where ¢; are
the Kohn-Sham eigenvalues of the neutral), and the matrix elements of Hamiltonian H,,, and
the overlap matrix elements S,,, are defined as

They depend on the atomic positions and on a well-guessed density p(r). By solving the
Kohn-Sham equations in an effective one particle potential, the Hamiltonian H is defined as

Hipi(r) = enbi(r), H=T+Vops(r). (4)

To calculate the Hamiltonian matrix, the effective potential V., has to be approximated.

Here, T being the kinetic-energy operator Y (1 = —3V?) and V() being the effective Kohn-

Sham potential, which is approximated as a simple superposition of the potentials of the neutral
atoms,

Vers(r) =D VP(lr =Ry |). (5)
i

Vjo is the Kohn-Sham potential of a neutral atom, r; = r — R; is an atomic position, and
R; being the coordinates of the j-th atom.

Finally, the short-range interactions can be approximated by simple pair potentials, and the
total energy of the compound of interest relative to that of the isolated atoms is then written
as,

occ

Froo =Y 6= S0 e, + 5 3 U (| Ry~ Ry ),
i Jomy

i#i (6)

occ occ

EBEE EZ'—E E Ejmj
[ g my

Here, the majority of the binding energy (ep) is contained in the difference between the
single-particle energies ¢; of the system of interest and the single-particle energies €y, of the
isolated atoms (atom index j, orbital index m;), U, (| R;j —R; |) is determined as the difference
between ep and E%CF for diatomic molecules (with EgCF being the total energy from parameter-
free density-functional calculations). In the present study, only the 5d and 6s electrons of the gold
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atoms are explicitly included, whereas the rest are treated within a frozen-core approximation
(Porezag et al., 1995} Seifert et al., [1996; Seifert|, 2007)).

3 The Hessian Matrix

In short, this method is described as follows: The Hessian matrix is represented in an orthonor-
mal basis consisting of the five or six eigenvectors of the Hessian matrix which span its kernel
and of (3N — 5)or (3N — 6) arbitrarily chosen mutually orthonormal basis vectors, which are
orthogonal to the kernel-eigenvectors. When represented in this basis, the Hessian should be
partially diagonal. The diagonal part is now cut away and the remaining Hessian is diagonalized
to reveal the eigenfrequencies of the clusters normal modes.

The Hessian matrix is the matrix of second derivatives of the energy with respect to geometry
which is quite sensitive to its geometry. Energy second derivatives are evaluated numerically.
The mass-weighted Hessian matrix is obtained by numerical differentiation of the analytical first
derivatives, calculated at geometries obtained by incrementing in turn each of the 3N nuclear
coordinates by a small amount ds with respect to the equilibrium geometry. The introduction of
the Hessian matrix and its diagonalization ultimately leads to the eigen-frequencies of the system
and its eigenvectors, describing the harmonic motion of the clusters atoms. In order to obtain
the matrix elements H;; of the Hessian matrix which are needed if one wishes to investigate
the clusters thermodynamic properties and one should obtain the derivatives of potential energy
surface (PES) (Warnke, 2007; |Press et al., 2007).

3.1 Cutting off the Kernel

The Hessian matrix H is symmetric by Schwarz’ theorem. The Kernel of H consists of all vectors
which describe pure translational and rotational motion of the center of mass of the molecule,
leaving its internal structure untouched. This is the eigenspace of H which is associated to the
eigenvalue 0. As we have 5 for linear 6 for non-linear degrees of freedom corresponding to such
translations and rotations, dim(Ker(H)) = 5or 6. We denote the five or six Hessian eigenvectors
associated to the Kernel k), ... k(76 ¢ ®3N  The remaining (3N — 5) or (3N — 6) Hessian
cigenvectors denoted by n(Y), ..., nGBN=5)or BN=6) ¢ R3N form a basis of the (3N —5) or (3N —6)
dimensional configuration space, in which the molecular structure may be described uniquely
without any reference to the position or orientation of the molecule relative to an inertial system.

In our method, we apply the Gram-Schmidt theorem, to set up an orthonormal basis for
R3N . The basis of the Kernel consisting of the five or six hessian eigenvectors k"), ..., k(7% can
easily be found, they are the orthonormalized translations and rotations of the structure. Now,
we simply use kI, ... k(®976) ag the first five or six basis vectors for an orthonormal basis of R*Y
denoted C. The remaining (3N — 5) or (3N — 6) basis vectors of C are the arbitrarily chosen
mutually orthonormal vectors ¢, ..., ¢(3N=5)or BN=6) ' which have to satisfy (k@ | ¢@)) = 0 for
any possible combination of 7 and j.

By construction, the basis vectors cW, .., cBN=5)or BN=6) ot hasis C form a basis of the (3N—
5) or (3N —6) dimensional configuration space which is the subspace of 3" without translations
and rotations. Consequently, the Hessian H, which is of rank(H) = (3N —5) or (3N — 6) can be
fully represented in the configuration space, the normal modes n do not contain any components
of the basis kM, ..., k(®" 6 of the kernel of the Hessian. Thus, the normal modes n € R3V,
satisfying the condition (n(®) | n()) = di; can be expanded in the basis cW, ..., cBN=5)or (3BN-6)
of the configuration space and they will still be orthonormal.
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Now, let us represent H in the basis C. Let U € M(R3Y x R3V) be the matrix consisting of
the column vectors of C, i.e.,

kgl) k§2) k§50T6) Cgl) C§3N75)or(3N76)
kgl) kéZ) kg507"6) Cgl) ngN_B)OT(?)N_G)
kgl) ki()?) k:(;)or(‘}) C;(),I) ci())3N—5)o7‘(3N—6)
U= (7)
1 2 5o0r6 ' 1 ?;N—5 or (3N—6
KD K B0 () N aN—)

Since U is a unitary transformation, the complex-conjugate of U is equal to its inverse, i.e.,
U*=U""! and thus the sought representation H' of H in the new basis C is found by calculating
U*HU = H’

Since the first five or six vectors k(l), ...,k(5 o76) of the basis C are the eigenvectors corre-
sponding to translation and rotation, the first five or six lines and columns of the representation
H' of H in this basis should be diagonal and the eigenvalues which are the H' ’s diagonal
elements should be equal to 0.

Diagonalization of the non-diagonal submatrix H” € M(RGN=5)orBN=6)) which is the
representation of the Hessian in the basis ¢, ..., cB3N=5)or BN=6) of the configuration space,
yields its eigenvectors, i.e., the (3N — 5) or (3N — 6) normal modes n'(1) ..., n/GN=5)or 3N=6) <
REN=5)or BN—6) ' The diagonal elements are the sought eigenvalues, the eigenfrequencies of the
normal modes which are needed for the calculation of thermodynamic properties.

First, we set up an orthonormal basis which allows to separate 3V into its (3N —5) or (3N —
6)-dimensional configuration subspace and the complementary five or six dimensional subspace
which makes reference to absolute position and orientation of the molecule. The latter is not
needed for the description of the molecule’s structure and the normal modes. Second, we rep-
resent the Hessian in this basis and cut away the part belonging to the five or six-dimensional
complementary space, before the new Hessian H” € M(%(SN_E’) or BN=6) . RBN-5)or (3N_6))
finally is diagonalized to reveal its eigenvalues and -vectors.

For quite all systems, results obtained in both ways, with the above method and without it
were compared. The results are very close to each other. The numerically optimized structures
are almost exact and/or the Hessian matrix changes very little around the minimum and the
numerical error can be ignored, using an appropriate method. Applying the new method in
our further calculations, we were able to find positive semidefinite Hessian matrices H” for all
structures.

3.2 Calculation of the Numerical Force Constants (FCs)

A re-optimized structure of the force constants (FCs) could be extracted from the already
optimized structure (Dong & Springborg, [2007)) as the following, the force(s) expressions were
obtained by derivation of the energy expression (or) from the expression of energy, the forces
can be easily calculated by derivation. Here, the Force(s) F; that act on the j-th atom of the
system can be calculated applying the Hellmann-Feynman theorem (Hellmann, [1937; Feynman,
1939)), so the forces are given as,

aEtot

Fj=—V;Epm =~ 0" (®)
J

These are all identical to 0 (within numerical accuracy) for the optimized structure (Dong
& Springborg, 2007). Interatomic forces can easily be derived from an exact calculation of the
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gradients of the total energy at the considered atoms site, finally, the forces acting on an atom
at R; are obtained as follows:

= 0H 0Smn 1 0
Fj - chimcin <_ BR] + € 8R] > + 5 =~ TR.jUjj,(‘ Rj — le |) (9)
J

i m,n

To extract the required force constants (FCs), the numerical first-order derivatives of the
forces used instead of the numerical-second-order derivatives of the total energy. In principle
there is no difference, but numerically the approach of using the forces is more accurate. A finite
difference formula has been introduced as following (Dvornikov} 2004),

02 Eyor 0 [0Ey ) )
= = —F‘ = — 'Fia
ORwOR;5  ORiq [aRjﬁ] R, Fio) aRjB( )
(10)
0% Eiot 11 [ 0 3,
el e O ) e 8
ORW0R,;;  2ds [8Rm( i#)+ 3R, )}

In principle, there is no difference, but numerically the approach of using the forces is more
accurate, for homonuclear case, M represents the atomic mass, for convenience eqn. (10) can
be written as

2
1 B 11 [ ) d } an

o | (Fjg) + 5o (-Fia
M OR;ORjz3 M 2ds | OR;q (-Fjp) + OR,s ( )

In total we end up with (3N x3N) values 811?927]1;%/5 The complete list of these force constants
e J
(FCs) is called the Hessian H;;, which is a (3N x 3NN) matrix. Here, i is the component of (x,
y or z) of the force on the j’th atom, so we get 3N. The ds is nothing but a differentiation
step-size.

4 Results and Discussion

4.1 The optimized structure of the cluster Ausg

We present a vibrational spectrum analysis of re-optimized Augg cluster, having energy (-4.95
eV/atom) with a group symmetry Cj at AE = 0. Initially, the structures were found through a
so called genetic algorithm (GA) in combination with Density Functional Tight-Binding (DFTB)
energy calculations and a steepest descent algorithm permitting a local total energy minimization
(Dong & Springborg, 2007).

In our case, we have accurately predicted the vibrational frequencies of the clusters which
are very strongly depend on the size, the structure and the shape of the clusters, as well as,
mainly the spectrum ranges are influenced by the stretching and the bending mode vibrations
of the atoms that happens due to the changes on the bond length fluctuations on the PES of
equilibrium coordinates for a small step-size ds = +0.01 a.u.. The detailed information can be
found below.
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Figure 1: Augg (C); Style (Wireframe): View along the a-axis, b-axis and c-axis (from top to
bottom) at AE = 0.

Figure 2: Ausg (C1) ; Style (Wireframe): View along the a*-axis, b*-axis and c*-axis (from top to
bottom) at AE = 0.
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4.2 The vibrational frequency (w;) range of the cluster Auzg at AE =0

Table 1 shows that the low (at the least) and the high (at the most) frequency range of cluster
Ausg. The lowest and the highest frequency range in between 1.62 em ™! to 298.53 em ™.
Firstly, the cluster has some low frequencies (W) in between 1.62-9.81 cm ™!, that is only
for the very first 8 NVM, which comes even below the scale of Far Infrared FIR, IR-C 200-10
em™L.
Secondly, for the 9-92 NVM, the frequency ranges are occurred in between 11.98-199.43
em™!, which comes within the range of Far Infrared FIR, IR-C 200-10 cm L.
Thirdly, for the rest of the 93-108 NVM, are having the maximum high frequencies, which
are ((w;) - 205.14-298.53 em™!) falling within the range of Mid Infrared MIR, IR-C 3330-200

cm

Table 1: Calculated vibrational frequency (w;) range of the re-optimized gold atomic cluster, Ausg

at AE = 0. Normal modes and the corresponding vibrational frequencies (w;) are in cm™!.

NVM w; NVM w; NVM Wi NVM w;

(3N-6) em™! (3N-6) em™' (3N-6) cem~! (3N-6) cm7!
1 1.62 28 31.77 55 74.41 82 163.80
2 2.85 29 34.41 56 80.07 83 164.35
3 3.51 30 35.20 57 82.44 84 169.29
4 6.58 31 35.40 58 86.02 85 173.54
5 7.13 32 36.75 59 86.95 86 179.60
6 7.67 33 37.54 60 90.02 87 184.56
7 8.49 34 38.99 61 91.61 88 187.06
8 9.81 35 40.34 62 94.83 89 192.05
9 11.98 36 42.83 63 100.22 90 194.80
10 12.47 37 4417 64 101.26 91 197.09
11 13.19 38 47.30 65 103.00 92 199.43
12 14.02 39 47.89 66 105.42 93 205.14
13 14.58 40 48.79 67 108.33 94 208.83
14 15.21 41 50.40 68 111.57 95 211.31
15 16.31 42 51.64 69 115.52 96 215.72
16 16.80 43 54.34 70 121.19 97  220.88
17 18.54 44 54.84 71 124.43 98 223.94
18 18.97 45 56.43 72 128.45 99 224.58
19 20.05 46 58.32 73 130.20 100  231.38
20 21.66 47 61.07 74 136.19 101  238.54
21 22.39 48 62.63 75 137.73 102 238.89
22 24.21 49 64.68 76 143.49 103 249.08
23 25.96 50 67.74 77 148.10 104  254.35
24 27.46 51 69.47 78 150.45 105  260.13
25 27.76 52 71.31 79 151.95 106  262.69
26 28.62 53 72.20 80 158.18 107  276.44
27 29.72 54 73.05 81 160.72 108  298.53

4.3 The double and the single state degeneracy of the cluster Auss at AE =0

First of all, the vibrational spectra of eigenvalues were found in the region between 1.62 and
298.53 cm~!. Mainly, we have observed the most of the eigenvalues (88) are non-degenerate
(single state) vibrations. Moreover, 20 out of 108 (NVM of (3N-6)) has 10 pairs of double-fold
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degeneracy (see Table 1). This gives a very strong confirmation of the energy can be observed
and be released with the same amount that corresponds to a certain local bong length re-
arrangements. Very interestingly, at NVM 101, 102 that gives a pair of degeneracy {238.54,
238.89 } em~! that has occurred within the range of Mid Infrared MIR, IR-C 3330-200 c¢m ™.
Surely, such kind of spectrum could be highly possible to observe in the experimental calcula-
tions. The other extreme case, NVM 5, 6 gives a pair of degeneracy {7.13, 7.67} cm~! which
has occurred even below the scale of Far Infrared FIR, IR-C 200-10 ¢m ™!, the most probably
this could be silent in the experimental case. Finally, the consecutive pairs are: NVM 15, 16
— {16.31, 16.80} cm~! and NVM 17, 18 — {18.54, 18.97} em ™!, which has occurred within
the scale of Far Infrared FIR, IR-C 200-10 ¢m™!, it reveals openly and gives a confirmation
of four-edged core-level atoms are moving equally having with the same bond lengths on the
clusters, additionally, this also can be observable in the experimental way of calculations.

Mainly, on the clusters, the degree of degeneracy is being released due to the bond length
fluctuation of the symmetric as well as anti-symmetric move of the atoms. Additionally, for
understanding and describing the atomic interactions in the cluster (Wales, 2013; Ballard et
al., 2015; Martiniani et al., 2014; Mandelshtam et al., 2006; Sharapov & Mandelshtam, 2007;
Sharapov et al., 2007), one must have the basic knowledge of, if the energy absorbed when bond
breaks, at the same time, the energy released when bond forms. When increase the bond length
then bond strength will become weaker but if we bring closer the bond length to each other,
as a result, the bond strength will become stronger. We can observe attraction with a shared
electrons as well as repulsion due to nuclei and electron shell. In addition to that due to the
degree of degeneracy [which are being composed by] that gives a deep interpretation about the
elliptical motion but that could be a single motion.

Figure 3: Ausg (C1); Style (Wireframe, Polyhedral): The lowest energy geometrical structures of
Augsg cluster. Standard orientation of crystal shape at AE = 0.

In total, when two atoms come very close, the force between them is always repulsive, because
the electrons stay outside and the nuclei repel each other. Unless both atoms are ions of the same
charge (e.g., both negative) the forces between atoms is always attractive at large internuclear
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Figure 4: Ausg (C1); Style (Wireframe): Rotate around the x axis (upward direction [above] and
downward direction [below]) at AE = 0.

distances r. Since the force is repulsive at small r, and attractive at small r, there is a distance
at which the force is zero. This is the equilibrium distance at which the atoms prefer to stay.
The interaction energy is the potential energy between the atoms. It is negative if the atoms
are bound and positive if they can move away from each other. The interaction energy is the
integral of the force over the separation distance, so these two quantities are directly related.
The interaction energy is a minimum at the equilibrium position. This value of the energy is
called the bond energy, and is the energy needed to separate completely to infinity (the work
that needs to be done to overcome the attractive force.) The strongest the bond energy, the
hardest is to move the atoms, for instance the hardest it is to melt the solid, or to evaporate its
atoms. As a result, this makes a complete structure for those collection of the atoms.

4.4 Structural view of the shapeless structures

In one case, from the Figs. 1, 2; we are looking down the direct space a, b, or ¢ axis and in
the other case we are looking down the reciprocal space a*, b* and c¢* axes. Since the axis of
Cartesian coordinates does not have any changes, because it is not a crystal structure.

Fig 3. clearly shows the standard orientation of crystal shape of Ausg(Cy) cluster at AE = 0
(the lowest energy geometrical structure). Nevertheless, to see the perspective view, we have
plotted with a two different style (Wireframe, Polyhedral).

Above all, from the Figs. 4, 5 and 6 we are able to see the minute detailed information of
all different kinds of rotations that help us to visualize as well as to understand the orientation
of the structures. Example: the structures are being rotated around the X-axis, the Y-axis and
the Z-axis [See the number of faces, vertices and edges|. Over all, in the perspective view the
shell-like structures are found. It is suggested that the ability of gold to form strong binding in
low-coordinated systems is the reason for the occurrence of shell-like structures. This cluster is
composed of two shells surrounding a central atom.

reported a joint experimental and theoretical study of the structural evolution
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of medium-sized gold clusters. They found that the most stable structures of Augg to Augg1
exhibit core-shell type structures all with a highly robust tetrahedral four-atom core. All of
their three clusters are observed to possess two coexisting isomers in the cluster beam. The
appearance of a fragment of the face centered cubic (FCC) bulk gold, that is, the pyramidal
Auz_ol, at the size of Auggl implies that the cluster-to-bulk transformation starts to emerge at
the medium size range. It is expected that larger pyramidal like intermediates may emerge in
later medium-to large-sized Au clusters beyond Auggl.

Surely, our numerical calculations performed within this study confirms the theoretical and
the experimental results: The most stable configuration of the cluster is not crystalline but with
a high probability this cluster is a shapeless. This cluster was composed of two shells surrounding
a central atom. Furthermore, a shell structure should not be considered as a kind of ordering
in the context of small nanoparticles. Even the random arrangement of gold atoms, used as
starting condition for some of the calculations, shows such a shell structure. We conclude that,
the highest probability of the lowest energy structure can be amorphous (as non-crystalline),
which is an excellent agreement with the conclusion of the known results (Shao, 2014; |Doyel
11998; Huang}, [2008; [Wang L.M. & Wang L.S.| 2012).

N

Gy

Figure 5: Augg (C1); Style (Wireframe): Rotate around the y axis (LHS direction [above] and RHS
direction [below]) at AE = 0.
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Figure 6: Auss (Cy); Style (Wireframe): Rotate around the z axis (clockwise (CW) direction
[above] and anti-clockwise (ACW) direction [below]) at AE = 0.

5 Conclusion

We have calculated the vibrational frequency (at AE = 0) of a medium-sized nanoclusters Ausg,
the shell-like structure (of course, they are part of the family of so-called full-shell clusters),
by using a numerical finite-difference method with DFTB approach. Last but not least, our
present study gives an additional support to the prediction of the existence of shapeless (due
to the absence of symmetry) stable structures on the metal clusters. The appearance of such
structures will always depend on the range of the n-body interactions which are responsible
for the metallic cohesion in those systems. Above all, our investigation has revealed that the
vibrational spectrum strongly depends upon the size, the shape, and the structure of the atomic
cluster.
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