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Şerife Faydaoğlu1∗ ID , Valery G. Yakhno2 ID

1Department of Mathematics and Science Education, Buca Faculty of Education, Dokuz Eylul
University, Buca, Izmir, Turkey
2Electrical and Electronics Engineering Department, Dokuz Eylul University, Buca, Izmir,
Turkey

Abstract. The main topic of the article is the partial differential equation of the transverse oscillation in

composite materials. An approach for deriving the nonstationary Green’s functions of the considered differential

equation is described. This approach is concerned with finding the regularized Green’s function in the form

of a finite Fourier series. Here, the eigenfunctions are a complete set of orthonormal eigenfunctions for the

Sturm-Liouville operator, which also satisfies the boundary conditions. Computational experiments support the

reliability of the claimed approach.

Keywords: Singular boundary value problem, vibration transport, two-step rod, eigenvalues, eigenfunctions,

generalized solution.

AMS Subject Classification: 34B24, 34B27, 34B37, 34L10, 35R12.

Corresponding author: Şerife Faydaoğlu, Department of Mathematics and Science Education, Buca Faculty

of Education, Dokuz Eylul University, Buca, Izmir, Turkey, +905324073583, e-mail: serife.faydaoglu@deu.edu.tr

Received: 28 October 2021; Revised: 22 November 2021; Accepted: 12 December 2021;

Published: 30 December 2021.

1 Introduction

The Green’s functions are a powerful method for solving many problems of electromagnetic,
acoustics, elasticity and other applied area. The derivation of the Green’s function for linear
anisotropic elastodynamic materials has been made by many authors (see, for example, Ba et
al., 2020; Ghadi et al., 2009; Pan, 2019; Yakhno, 2018a, 2018b; Yakhno & Altunkaynak, 2018;
Yakhno, 2020; Zhan at al., 2019, and references of these papers). The Green’s functions have
been applied to solve of the wave propagation problems in composite elastic materials. For
instance, an exact solution of equations for two-clamped-free rods has been found in (Inceoglu
& Gurgoze 2000). The Green’s functions are constructed for a second-order linear partial differ-
ential equation with constant coefficients in (Faydaoglu & Guseinov, 2003, 2010, Yakhno, 2018a,
2018b; Yakhno & Altunkaynak, 2018; Yakhno, 2020).

The construction of the Green function for higher order equations can be found in (Polyanin,
2002) for the case when the coefficients of the equations are constants which means that materials
are not composite. We note that the transverse vibration of the composite rod is modeled by
partial differential equations of the fourth order with piecewise constant coefficients and the
techniques of the derivation of the Green’s function for these equations have not been developed
so far.

The aim of our research is to derive the regularized Green’s function of the time-dependent
equation of the transverse oscillation of a composite material. We propose a new analytical
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approach for deriving the regularized Green’s function. This approach is based on the general-
ization of the Fourier series expansion. First, the ordinary differential equation with boundary
and matching conditions corresponding to the given partial differential equation for vibration
transmission is obtained. It is found eigenvalues and eigenfunctions of this equation. Similar
problems for ordinary differential equations have been studied in (Allahverdiev & Tuna, 2019a,
2019b; Kulaev, 2016; Iraniparast at al., 2017; Faydaoglu & Yakhno, 2016; Mukhtarov & Yucel,
2020; Mukhtarov et al. 2018, 2020; Faydaoglu, 2018, 2019; Vladimirov, 1971). These eigenfunc-
tions used in the Fourier series expansion form the set of orthogonal basis functions. The Green’s
function is derived in the form of a formal Fourier series, including this set of eigenfunctions.
An regularization of this occuring Green’s function is in the form of a finite Fourier series.

2 The Green’s Function for Vibration Transport in
Two-Layered Rods

Let us consider piecewise constant functions which are defined by the following equalities

η(x) =

{
η1, 0 ≤ x < p
η2, p < x ≤ q

, α(x) =

{
α1, 0 ≤ x < p
α2, p < x ≤ q

,

β(x) =

{
β1, 0 ≤ x < p
β2, p < x ≤ q

, γ(x) =

{
γ1, 0 ≤ x < p
γ2, p < x ≤ q

,

where ηi, αi, βi, γi are constants and ηi > 0, αi > 0, βi > 0, γi > 0 for i = 1, 2. In physical
terms η is the elastic density, α(x) is the elastic modulus, β(x) is the transverse section area,
γ(x) is the moment of inertia of the transverse section. We define the Green’s function as a
generalized Ω(x, t;x0) function that satisfies the following equations for the transverse vibration
of the composite material:

η(x)α(x)
∂2Ω

∂t2
+

∂2

∂x2
(β(x)γ(x)

∂2Ω

∂x2
) = δ(x− x0)δ(t), (1)

x ∈ (0, p) ∪ (p, q), t ∈ R,

and the following initial data, boundary and interface conditions

Ω(x, t;x0)|t<0 = 0, (2)

Ω(0, t;x0) =
∂

∂x
Ω(0, t;x0) = 0, Ω(q, t;x0) =

∂

∂x
Ω(q, t;x0) = 0, (3)

Ω(p− 0, t;x0) = Ω(p+ 0, t;x0),
∂
∂xΩ(p− 0, t;x0) =

∂
∂xΩ(p+ 0, t;x0),

ψ1
∂2

∂x2Ω(p− 0, t;x0) = ψ2
∂2

∂x2Ω(p+ 0, t;x0),

ψ1
∂3

∂x3Ω(p− 0, t;x0) = ψ2
∂3

∂x3Ω(p+ 0, t;x0),

(4)

where x0 is a fixed real parameter from (0, p)∪ (p, q), ψ1 = β1γ1, ψ2 = β2γ2, x ∈ (0, p)∪ (p, q) are
constants and δ(x− x0)δ(t) is the Dirac delta functions with the support at x = x0 and t = 0.

The following lemma holds in generalized functions theory (see, for example, Vladimirov,
1971).
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Lemma 1. Let x0 ∈ (0, p)∪(p, q) be a parameter, Γ(t) be the Heaviside function (Γ(t) = 1, t ≥ 0
and Γ(t) = 0, t < 0 and ω(x, t;x0) be a generalized function satisfying

η(x)α(x)
∂2ω

∂t2
+

∂2

∂x2
(β(x)γ(x)

∂2ω

∂x2
) = 0, (x ∈ (0, p) ∪ (p, q), t > 0), (5)

the boundary conditions at the end faces x = 0 and x = q

ω(0, t;x0) =
∂

∂x
ω(0, t;x0) = 0, ω(q, t;x0) =

∂

∂x
ω(q, t;x0) = 0, t > 0; (6)

and the interface conditions at x = p for t > 0

ω(p− 0, t;x0) = ω(p+ 0, t;x0),
∂
∂xω(p− 0, t;x0) =

∂
∂xω(p+ 0, t;x0),

ψ1
∂2

∂x2ω(p− 0, t;x0) = ψ2
∂2

∂x2ω(p+ 0, t;x0),

ψ1
∂3

∂x3ω(p− 0, t;x0) = ψ2
∂3

∂x3ω(p+ 0, t;x0);

(7)

and the initial conditions

ω(x, 0;x0) = 0,
∂ω

∂t
(x, 0;x0) =

1

η(x0)α(x0)
δ(x− x0). (8)

Then Ω(x, t;x0) = Γ(t)ω(x, t;x0) is the Green’s function of the transverse vibration of com-
posite material.

Proof. Let Ω(x, t;x0) be the generalized function which is equal to ω(x, t;x0) for t > 0 and
is equal to 0 for t < 0, i.e. Ω(x, t;x0) = Γ(t)ω(x, t;x0). Applying operator of differentiations
∂
∂t ,

∂2

∂t2
, ∂2

∂x2 to Ω(x, t;x0) and using (8) we find

∂

∂t
Ω(x, t;x0) = δ(t)ω(x, t;x0) + Γ(t)

∂

∂t
ω(x, t;x0) =

= δ(t)ω(x, 0;x0) + Γ(t)
∂

∂t
ω(x, t;x0) = Γ(t)

∂

∂t
ω(x, t;x0),

∂2

∂t2
Ω(x, t;x0) =

∂

∂t
(
∂

∂t
Ω(x, t;x0)) =

∂

∂t
(Γ(t)

∂

∂t
ω(x, t;x0)) =

= δ(t)
∂

∂t
ω(x, t;x0) + Γ(t)

∂2

∂t2
ω(x, t;x0) =

= δ(t)
∂

∂t
ω(x, t;x0)|t=0 + Γ(t)

∂2

∂t2
ω(x, t;x0) =

=
1

ρ(x0)α(x0)
δ(x− x0)δ(t) + Γ(t)

∂2

∂t2
ω(x, t;x0)

∂2

∂x2
Ω(x, t;x0) = Γ(t)

∂2

∂x2
ω(x, t;x0).

Here we use equalities (see, for example, Vladimirov, 1971, p. 77-78 )

∂ω

∂t
δ(t) =

∂ω

∂t
|t=0δ(t), η(x)α(x)δ(x− x0) = η(x0)α(x0)δ(x− x0).

Moreover, we have
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∂2

∂x2
(β(x)γ(x)

∂2

∂x2
Ω(x, t;x0)) = Γ(t)

∂2

∂x2
(β(x)γ(x)

∂2

∂x2
ω(x, t;x0)).

It follows from above mentioned equalities that the function Ω(x, t;x0) = Γ(t)ω(x, t;x0)
satisfies (1) if ω(x, t;x0) satisfies (5)-(8). The interface conditions (3), (4) follow from conditions
(6), (7).

Remark 1. Equation (5) can be written in the form

µ(x)
∂2ω

∂t2
+
∂4ω

∂x4
= 0, x ∈ (0, p) ∪ (p, q), t > 0,

where µ(x) is define by

µ(x) =

{
µ1, 0 ≤ x < p
µ2, , p < x ≤ q

, µ1 =
η1α1

β1γ1
, µ2 =

η2α2

β2γ2
.

3 Computing of the Regularized Green’s Function

In our paper we replace the Dirac delta function δ(x−x0) by a regularized (approximate) classical
function δN (x, x0) (see section 3.4) and describe a method of computation of an approximate
Green’s function which is an exact solution of (5)-(8), where instead of δ(x − x0) we have
δN (x, x0).

3.1 Computing of Eigenvalues and Eigenfunctions of Singular Sturm-Liouville
Problem

We consider the following ordinary differential equation of the fourth order

z(4)(x) = λµ(x)z(x), x ∈ (0, p) ∪ (p, q), (9)

subject to the matching conditions

z(p− 0) = z(p+ 0), z′(p− 0) = z′(p+ 0),

ψ1z
′′(p− 0) = ψ2z

′′(p+ 0), ψ1z
′′′(p− 0) = ψ2z

′′′(p+ 0),
(10)

and boundary conditions

z(0) = z(q) = 0, z′(0) = z′(q) = 0. (11)

Here the function µ(x) is defined in Remark 1.

The number λ, for which there exists a non-zero function z(x) satisfying (9)-(11), is called
an eigenvalue of the boundary value problem (BVP) (9)-(11) and this non-zero function z(x) is
called an eigenfunction of BVP (9)-(11) corresponding to the eigenvalue λ. The main problem
of this section is to find all eigenvalues and associated eigenfunctions of BVP (9)-(11).

We note that the solutions of (9) under the conditions (11) can be presented as:

z(x) =


c1[cosh(sx)− cos(sx)] + c2[sinh(sx)− sin(sx)], x ∈ [0, p),

a1[cosh(s1(q − x))− cos(s1(q − x))] + a2[sinh(s1(q − x))

− sin(s1(q − x))], x ∈ (p, q],

(12)
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where c1, c2, a1, a2 are arbitrary constants; s and s1 are parameters such that s4 = λµ1, s
4
1 =

s4(µ2/µ1).
The eigenfunctions of the problem (9)-(11) in the form (12) are nonzero and satisfy the

interface conditions (10). Using (10), (12) we obtain the homogeneous system of the following
linear algebraic equations for finding c1, c2, a1, a2 such that c21 + c22 + a21 + a22 > 0:

c1[cosh(sp)− cos(sp)] + c2[sinh(sp)− sin(sp)]− a1[cosh(s1(q − p))

− cos(s1(q − p))]− a2[sinh(s1(q − p))− sin(s1(q − p))] = 0,
(13)

c1s[sinh(sp) + sin(sp)] + c2s[cosh(sp)− cos(sp)] + a1s1[sinh(s1(q − p))

+ sin(s1(q − p))] + a2s1[cosh(s1(q − p))− cos(s1(q − p))] = 0,
(14)

c1s
2[cosh(sp) + cos(sp)] + c2s

2[sinh(sp) + sin(sp)]− a1ψs
2
1[cosh(s1(q − p))

+ cos(s1(q − p))]− a2ψs
2
1[sinh(s1(q − p)) + sin(s1(q − p))] = 0,

(15)

c1s
3[sinh(sp)− sin(sp)] + c2s

3[cosh(sp) + cos(sp)] + a1ψs
3
1[sinh(s1(q − p))

− sin(s1(q − p))] + a2ψs
3
1[cosh(s1(q − p)) + cos(s1(q − p))] = 0.

(16)

Here ψ is a given constant defined by ψ = ψ2/ψ1, where ψ1, ψ2 are constants given after formula
(4). We know that the homogeneous system (13)-(16) has non-zero solutions if the determinant
of this system equal to zero. We denote this determinant as ∆(s). The roots of ∆(s) = 0 can
be computed numerically.

Example 1. Computation of eigenvalues: Let us consider the composite rod with the following
characteristics

α1 = 0.1(m2), α2 = 0.1(m2), β1 = 106(N/m2),

β2 = 0.9x106(N/m2), η1 = 4x103(kg/m3), η2 = 3x103(kg/m3),

γ1 = 10−2(m2), γ2 = 0.3x10−2(m2), q = 10(m), p = 4(m).

Applying Maple tools the roots we compute roots of ∆(s) = 0 as follows:

s1 = 0.4004802408, s2 = 0.6740200856, s3 = 0.9420222890, s4 = 1.192368928,

s5 = 1.476182727, s6 = 1.743724014, s7 = 1.995220148, s8 = 2.279817702,

s9 = 2.544695328, s10 = 2.797873532, s11 = 3.083294900, s12 = 3.345615782,

s13 = 3.600730249, s14 = 3.886648011 s15 = 4.146486921, s16 = 4.403762698,

s17 = 4.689856810, s18 = 4.947340975, s19 = 5.206957379, s20 = 5.492904816,

s21 = 5.748209291, s22 = 6.010297860, s23 = 6.295778953, s24 = 6.549118274, ....

Using these computed values we determine eigenvalues of BVP (9)-(11) by the formula λn =
s4n/µ1. Here n = 1, 2, 3, ... and the constant µ1 is introduced in Remark 1.

An eigenfunction associated to λn is found by taking a2 = 1 and considering the system of
linear algebraic equations (13), (14), (15) with unknown c1, c2, a1 for any fixed natural number

n. The determinant of this system is different from zero for s = (λnµ1)
1
4 and s = s1 ≡ (λnµ2)

1
4

(we have checked it by Maple tools). Here constants µ1, µ2 are defined in Remark 1.
Using the Cramer’s method we obtain that the system (13), (14), (15) has a unique solu-

tion c1, c2, a1 for any fixed natural number n and for s = (λnµ1)
1
4 and s = s1. Considering

solution (12) for s = (λnµ1)
1
4 and s1 ≡ (λnµ2)

1
4 we find eigenfunctions yn(x) of BVP (9)-(11)

corresponding to λn for any natural number n.

209



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.6, N.3, 2021

3.2 Some Properties of Eigenfunctions and Eigenvalues of Singular
Sturm-Liouville Problem

Proposition 1. Eigenvalues of (9)-(11) are real and positive.

Proof. The proof is given in the work Faydaoglu, 2019 (see the proof of the theorem 8, p.2519).

Proposition 2. Eigenfunctions zn and zm of (9)-(11) associated with the distinct λn and λm
provides the following orthogonality relation:∫ q

0 µ(x) zn(x)zm(x)dx = 0, n ̸= m, x0 ∈ (0, p) ∪ (p, q). (17)

Proof. The proof is given in the work Faydaoglu, 2019 (see the proof of the theorem 9, p.2519).

Proposition 3. Let f(x) be from the class of functions defined on C1[0, q] ∩ C4([0, p) ∪ (p, q])
such that

f(0) = f(q) = 0,

ψ1f
′′(p− 0) = ψ2f

′′(p+ 0), ψ1f
′′′(p− 0) = ψ2f

′′′(p+ 0),

∫ q

0
|f (4)(x)|dx <∞.

Then the Fourier series of f(x) is uniformly absolutely-convergent in [0, q] and

f(x) =
∞∑

m=1

fmXm(x), (18)

where

fm =

∫ q

0
µ(x) f(x)Xm(x)dx, (19)

Xm(x) =
zm(x)

∥zm∥
, ∥zm∥2 =

∫ q

0
µ(x) z2m(x)dx,m = 1, 2, 3.... (20)

Proof. The proof is described in the work Faydaoglu, 2018.

3.3 Fourier Series of the Dirac Delta Function δ(x− x0)

The class of functions f(x) from C1[0, q] ∩ C4([0, p) ∪ (p, q]) such that

f(0) = f(q) = 0,

ψ1f
′′(p− 0) = ψ2f

′′(p+ 0), ψ1f
′′′(p− 0) = ψ2f

′′′(p+ 0),

∫ q

0
|f (4)(x)|dx <∞

is denoted as f = F (p, ψ1, ψ2, q).
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We define the inner product < U(x), V (x) >F of two arbitrary functions U(x), V (x) from F by

< U(x), V (x) >F=

∫ q

0
µ(x)U(x)V (x)dx.

For this inner product space F we consider the dual space F ′ which is the set of all linear
functionals from F into R.

The Dirac delta function with the support at x = x0, where x0 is a fixed point from (0, p) ∪
(p, q), is defined by the formula

< δ(x− x0), τ(x) >F= µ(x0)τ(x0) (21)

for any test function τ(x) ∈ F and x ∈ (0, q). Moreover, the function τ(x0) can be presented in
the form of the uniformly convergent series (see Proposition 3)

τ(x0) =

∞∑
m=1

τmXm(x0), (22)

where

τm =

∫ q

0
µ(x)τ(x)Xm(x)dx, m = 1, 2, 3, . . . (23)

Hence, using (21), (22), we have

< δ(x− x0), τ(x) >F= µ(x0)
∞∑

m=1

τmXm(x0). (24)

Using formula (23) and uniformly convergence of the series in the right side of (22), we have

< δ(x− x0), τ(x) >F=

∫ q

0
µ(x)

[
µ(x0)

∞∑
m=1

Xm(x0)Xm(x)

]
τ(x)dx

=< µ(x0)
∞∑

m=1

Xm(x)Xm(x0), τ(x) >F . (25)

Therefore, the series

µ(x0)
∞∑

m=1

Xm(x0)Xm(x) (26)

is the formal Fourier series of the Dirac delta function.

3.4 A Regularization for the Dirac Delta Function

Let us consider the partial sums of the series (26)

δN (x;x0) = µ(x0)
N∑

m=1

Xm(x0)Xm(x), (27)

where N runs natural numbers.

Theorem 1. Let N be a natural number; p, q be given real constants such that 0 < p < q;
x0 ∈ (0, p) ∪ (p, q); δ(x− x0) , δN (x, x0) be the Dirac delta function and the function defined by
(21), (27). Then

lim
N→∞

< δN (x;x0), τ(x) >F=< δ(x− x0), τ(x) >F ,

for any τ(x) ∈ F .
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Proof. Using formula (27) and the uniformly convergence of
∑∞

m=1 τmXm(x) to τ(x) on [0, q]
we have

< δN (x;x0), τ(x) >F=< µ(x0)
∞∑

m=1

Xm(x0)Xm(x), τ(x) >F

= µ(x0)
N∑

m=1

[∫ q

0
µ(x)Xm(x)τ(x)dx

]
Xm(x0) = µ(x0)

N∑
m=1

τmXm(x0). (28)

Using formulas (24), (28) we find

< δ(x− x0)− δN (x;x0), τ(x) >F= µ(x0)
∞∑

m=N

τmXm(x0)

for any τ(x) ∈ F . Using the convergence of
∑∞

m=1 τmXm(x0) we find that
∑∞

m=N τmXm(x0)
tends to 0 for any τ ∈ F and x0 ∈ (0, p) ∪ (p, q). This means that

lim
N→∞

< δ(x− x0)− δN (x;x0), τ(x) >F= 0

or

lim
N→∞

< δN (x;x0), τ(x) >F=< δ(x− x0), τ(x) >F ,

for any τ(x) ∈ F and x0 ∈ (0, p) ∪ (p, q).

Definition 1. The function δN (x;x0) with the parameter N , defined by (27), is called the regu-
larization of the Dirac delta function δ(x−x0) and N is called the parameter of the regularization.

Example 2. Computation of the regularization of the Dirac delta function: Let us consider the
rod with characteristics described in Example 1. Using formula (27) for x0 = 2, N = 5 and
N = 19 and applying Maple tools we have computed the regularized Dirac delta function for two
different regularized parameters. The results of this computation are presented in Figs. 1, 2.

Figure 1: The graph of δN (x, x0) for N = 5, x0 = 2

212
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Figure 2: The graph of δN (x, x0) for N = 19, x0 = 2

3.5 An Explicit Formula for Regularized Solution for Singular
Boundary Value Problem (5) - (8)

Let us consider the problem of finding a function satisfying (5) - (8), when the Dirac delta
function δ(x− x0) is replaced by its regularization δN (x, x0). This problem is stated as follows.
Let p, q be positive constants, p < q; x0 be parameter from x0 ∈ (0, p)∪ (p, q); N be the natural
number; δN (x;x0) be function, defined by (27); ηi, αi, βi, γi be given real constants such that
ηi > 0, αi > 0, βi > 0, γi > 0, ( i=1,2); ψi = βiγi ( i=1,2); α(x) = α1, η(x) = η1 for x ∈ (0, p)
and α(x) = α2, η(x) = η2 for x ∈ (p, q); µ(x) be the function defined in Remark 1. The problem
is to find a function ωN (x, t;x0) satisfying the following differential equation

µ(x)
∂2ωN

∂t2
+
∂4ωN

∂x4
= 0, (x ∈ (0, p) ∪ (p, q), t > 0), (29)

with boundary conditions at the end faces x = 0 and x = q:

ωN (0, t;x0) =
∂

∂x
ωN (0, t;x0) = 0, ωN (q, t;x0) =

∂

∂x
ωN (q, t;x0) = 0, t > 0; (30)

and interface conditions at x = p for t > 0:

ωN (p− 0, t;x0) = ωN (p+ 0, t;x0),
∂
∂xωN (p− 0, t;x0) =

∂
∂xωN (p+ 0, t;x0),

ψ1
∂2

∂x2ωN (p− 0, t;x0) = ψ2
∂2

∂x2ωN (p+ 0, t;x0),

ψ1
∂3

∂x3ωN (p− 0, t;x0) = ψ2
∂3

∂x3ωN (p+ 0, t;x0);

(31)

and initial conditions:

ωN (x, 0;x0) = 0,
∂ωN

∂t
(x, 0;x0) =

1

η(x0)α(x0)
δN (x;x0). (32)

Theorem 2. Let constants p, q, ψ1, ψ2; parameter x0 and functions α(x), η(x), µ(x), δN (x;x0)
satisfy above mentioned assumptions. Then a solution of (29) - (32) is defined by the following
formula

ωN (x, t;x0) =
µ(x0)

η(x0)α(x0)

N∑
m=1

Xm(x0)
sin

(√
λm t

)
√
λm

Xm(x), (33)

where λm (m = 1, 2, 3, ..., N) are eigenvalues of boundary value problem (9)-(11), Xm(x) is the
eigenfunction of boundary value problem (9)-(11) corresponding to λm and defined by (20) for
any natural number m.
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Proof. A solution of initial boundary value problem (29) - (32) we search in the form

ωN (x, t;x0) =
N∑
k=1

Tk(t;x0)Xk(x), x ∈ (0, p) ∪ (p, q), t > 0, (34)

where x0 is a parameter from the set (0, p) ∪ (p, q); Tk(t;x0), k = 1, 2, 3, ..., N are unknown
functions; Xk(x) is the eigenfunction of (9)-(11) associated to λk and defined by (20) for any
natural number k. Substituting (34) into (29) and using the equality (property of eigenvalues
and eigenfunctions of (9)-(11) ) Xk(x) = λkµ(x)Xk(x) (x ∈ (0, p) ∪ (p, q)), we find

N∑
k=1

µ(x)
[
T ′′
k (t;x0) + λk Tk(t;x0)

]
Xk(x) = 0, x ∈ (0, p) ∪ (p, q), t > 0. (35)

Multiplying the right and left sides of (35) by Xm(x) and then integrating with respect to x
from 0 to q, we find

N∑
k=1

[
T ′′
k (t;x0) + λk Tk(t;x0)

] ∫ q

0
µ(x)Xk(x)Xm(x) dx = 0, x ∈ (0, p) ∪ (p, q), t > 0. (36)

Applying the property of orthogonality of eigenfunctions of (9)-(11) (see Proposition 2), we find
the following equality

T ′′
k (t;x0) + λk Tk(t;x0) = 0, t > 0, (37)

for any fixed natural m from the set {1, 2, 3, ..., N}.
Substituting (34) into (32) we find

N∑
k=1

Tk(0;x0)Xk(x) = 0,
N∑
k=1

[
T ′
k(0;x0)−

µ(x0)

η(x0)α(x0)
Xk(x0)

]
Xk(x) = 0. (38)

Multiplying the right and left sides of (38) by Xm(x) and then integrating with respect to x
from 0 to q, we find the following two equalities

N∑
k=1

Tk(t;x0)

∫ q

0
µ(x)Xk(x)Xm(x) dx = 0, (39)

N∑
k=1

[
T ′
k(0;x0)−

µ(x0)

η(x0)α(x0)
Xk(x0)

] ∫ q

0
µ(x)Xk(x)Xm(x) dx = 0. (40)

Applying Proposition 2 to (39), (40) we have

Tm(0;x0) = 0, T ′
m(0;x0) = 0 (41)

for any fixed natural m from the set {1, 2, 3, ..., N}. As a result we obtain that the function
ωN (x, t;x0), defined by (34), is a solution of initial boundary value problem (29) - (32) if and
only if each function T ′

m(t;x0) is a solution of the initial value problem (37), (41) for any
m = 1, 2, 3, ..., N . A solution of initial value problem (37), (41) is defined by the following
formula

Tm(t;x0) =
µ(x0)

η(x0)α(x0)

sin
(√
λm t

)
√
λm

(42)

for any m = 1, 2, 3, ..., N .
Substituting (42) into (34) we find that the function ωN (x, t;x0), defined by (33), is a solution

of initial boundary value problem (29) - (32).
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Remark 2. Let ω(x, t;x0) be generalized function satisfying (5)-(8). We consider the formal
Fourier series (26) instead of the Dirac delta function δ(x − x0) in (8). Applying to (5)-(8)
reasoning of the proof of Theorem 2 we find the presentation

ω(x, t;x0) =
µ(x0)

η(x0)α(x0)

∞∑
m=1

Xm(x0)
sin

(√
λm t

)
√
λm

Xm(x). (43)

Theorem 3. Let ω(x, t;x0) be generalized function satisfying (5)-(8), ωN (x, t;x0) be the func-
tion, defined by (33). Then

lim
N→∞

< ω(x, t;x0)− ωN (x, t;x0), τ(x) >F= 0 (44)

for any fixed x0 ∈ (0, p) ∪ (p, q), t > 0 and any τ(x) ∈ F .

Proof. Using formulas (33), (43) we have

< ω(x, t;x0)− ωN (x, t;x0), τ(x) >F

=

∞∑
m=1

µ(x0)

η(x0)α(x0)
Xm(x0)

sin
(√
λm t

)
√
λm

[∫ q

0
µ(x)Xm(x)τ(x)dx

]

=
µ(x0)

η(x0)α(x0)

∞∑
m=1

sin
(√
λm t

)
√
λm

τmXm(x0).

Applying the following inequality ∣∣∣∣∣sin
(√
λm t

)
√
λm t

∣∣∣∣∣ ≤ 1 (t > 0)

we have ∣∣∣∣∣sin
(√
λm t

)
√
λm

τmXm(x0)

∣∣∣∣∣ ≤ t |τmXm(x0)| (t > 0)

Using uniformly absolutely convergence of the series
∑∞

m=1 τmXm(x0) (see Proposition 3) we
find that

lim
N→∞

µ(x0)

η(x0)α(x0)

∞∑
m=N

sin
(√
λm t

)
√
λm

τmXm(x0) = 0

for any fixed x0 ∈ (0, p) ∪ (p, q), t > 0 and any τ(x) ∈ F .

Definition 2. The function ωN (x, t;x0) with the parameter N is called the regularization of the
generalized function ω(x, t;x0) if equality (44) is satisfied for for any fixed x0 ∈ (0, p)∪(p, q), t >
0 and any τ(x) ∈ F and N is called the parameter of the regularization.

Remark 3. Let ω(x, t;x0) be generalized function satisfying (5)-(8) , ωN (x, t;x0) be the function,
defined by (33). Applying Lemma 1 and Theorem 3 we find that the function ΩN (x, t;x0) =
Γ(t)ωN (x, t;x0) is the regularization of the Green’s function of the transverse vibration of the
two-layered rod Ω(x, t;x0) = Γ(t)ω(x, t;x0).

Example 3. Computation of the regularized Green’s function ΩN (x, t;x0): Let us consider the
rod with characteristics described in Example 1. Using formula (43), Remark 3 for x0 = 2,
t = 1, N = 5 and N = 19 and applying Maple tools we have computed the regularization of the
Green’s function of of the transverse vibration of the two-layered rod for two different regularized
parameters. The results of this computation are presented in Fig.3 and Fig.4.
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Figure 3: The graph of ΩN (x, t, x0) for N = 5, t = 1, x0 = 2

Figure 4: The graph of ΩN (x, t, x0) for N = 19, t = 1, x0 = 2

4 Conclusion

We have proposed a new analytical method for the approximate computation of the Green’s
function for a non-stationary partial differential equation for the transverse vibration of two
stepped rods. Applying this method, a formula for the computation of the Green’s function was
obtained in the regularized form. This formula is the form the finite Fourier series. The number
of terms in the series is a regularization parameter. This parameter is chosen as a suitable
approximation of the Dirac delta function, which appears in the dynamic equation that defines
the Green’s function. Computational experiments have confirmed the reliability of the claimed
method.
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