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Abstract. In this work, two analytic methods called the Adomian decomposition method (ADM) and the series
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1 Introduction

We consider the Volterra integral equations with a weakly singular kernel in the reproducing
kernel space as given by Wazwaz & Rach (2016)

φ(t) = f(t) +

∫ t

0

sµ−1

tµ
φ(s), t ∈ [0, T ], (1)

where µ > 1 and f is a given function. The exponent µ plays a major role in solving this
equation. In the case when µ < 1, an infinite set of solutions exists, one of which is continuous
whenever f(t) is continuously differentiable, and all other solutions have an infinite gradient at
the origin. This infinity of solutions arises because, for µ < 1, the singularity persists at t = 0
for all t > 0 (Diogo et al., 2007). In the case of µ > 1, the kernel is singular only at t = 0.

Lemma 1.

(a) If µ ∈]0, 1[ and f ∈ C1[0, T ] ( with f(0) = 0 if µ = 1), then equation (1) has a family of
solutions φ ∈ C[0, T ] given by the formula (Diogo et al., 2006)

φ(t) = c0t
1−µ + f(t) + γ + t1−µ

∫ t

0
sµ−2(f(s)− f(0))ds, t ∈ [0, T ], (2)

where

γ =

{
1

µ−1f(0) if µ < 1

0 if µ = 1
. (3)
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and c0 is an arbitrary constant. Out of the family of solutions, there is one particular solution
φ ∈ C[0, T ]. Such a solution is unique and can be obtained from equation (2) by taking c0 = 0.

(b) If µ > 1 and f ∈ Cm[0, T ],m ≥ 0, then the unique solution φ ∈ Cm[0, T ] of (1) is

φ(t) = f(t) + t1−µ +

∫ t

0
sµ−2f(s)ds. (4)

We note that (4) can be obtained from (2) with c0 = 0. Indeed, it follows from (2) that

c0 = lim
t→0+

t1−µφ(t) (5)

and this limit is zero when µ > 1. In principle, if we know the value of c0 we may use (2) to
obtain the numerical approximations of the solution.

The two credible methods, ADM and SSM; were formerly used by Wazwaz for solving linear
and non-linear VIE (Wazwaz, 2011). Regarding the Volterra equations with weakly singular
kernel, Wazwaz used ADM for solving it (Wazwaz & Rach, 2016). In this paper, we will present
the new employment of the SSM for the solution of VIEWSK with the help of the Maclaurin
series. The two methods will be applied in the case when µ ∈]0, 1[, because of the non-uniqueness
solution. Some known and new numerical problems will be checked to highlight the analysis
and to confirm the efficiency of the two methods.

2 Reviews of past work

The equation(1) with a non-compact kernel has been the subject of several works for example, in
Wazwaz & Rach (2016), Wazwaz solved this type of equation using ADM and VIM, and in Diogo
et al. (2004), the author presented high order product integration methods with the logarithmic
singular kernel. In Tang & Li (2008), solution of a class of Volterra integral equations with
singular and weakly singular kernels is presented. A numerical solution of VIE with WSK using
the SCWmethod is studied in Zhu &Wang (2015). In Lima & Diogo (2002), a numerical solution
of a non-uniquely solvable using extrapolation methods. A split-interval method for the solution
of singular IE was studied in Chen & Jiang (2011). Chen, Z., & Jiang, W presented the exact
solution of this equation in Chen & Jiang (2011). In Mokhtary et al. (2020), a computational
approach was given for non-linear VIEWSK.

3 Discussions of ADM and SSM

Consider the Volterra integral equation of weakly singular kernel (Diogo et al., 2006)

φ(t) = 1 + t+ t2 +

∫ t

0

sµ−1

tµ
φ(s), t ∈ [0, T ] (6)

That has a singularity at t = 0 and s = 0 for any positive value of t.

3.1 The Adomian Decomposition Method (ADM)(Wazwaz & Rach, 2016)

The Adomian decomposition method (ADM) was introduced and developed first by George
Adomian. The ADM can be easily applied on (6), it mainly comprises of decomposing the
unknown function φ(t) of any equation into a sum of an endless number of components defined
by the decomposition series

φ(t) =
∞∑
n=0

φn(t) (7)
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Substituting eq. (7) into both sides of eq. (6) yields

∞∑
n=0

φn(t) = f(t) +

∫ t

0
t−µsµ−1(

∞∑
n=0

φn(s))ds. (8)

Specifying the zero solution term φ0(t) = f(t), and the other terms φJ(t), j ≥ 1, can be achieved
by setting the recurrence relation{

φ0(t) = f(t)

φk+1(t) =
∫ t
0 t

−µsµ−1φk(s)ds, k ≥ 0,
(9)

where the approximation can be used as

ψn+1(t) =
n∑

m=0

φm(t) (10)

which will lead to the complete determination of the components φn+1(t) of φ(t). The series
solution of φ(t) follows immediately. The series solution will converge to the exact solution if
such a solution exists. Consequently, the sequence of solution approximations converges to the
exact solution as

φ(t) = lim
n→∞

ψn+1(t). (11)

3.2 The Series Solution Method (SSM) (Wazwaz, 2011)

In this section, we use the series solution method, which stems mainly from the Maclaurin series

φ(t) =

∞∑
n=0

ant
n (12)

or equivalently
φ(t) = a0 + a1t

2 + a3t
2 + ... (13)

for analytic functions, for solving (6). We assume that the solution φ(t) of (6) is analytic and
possesses a Maclaurin series given in (13), where the coefficients an should be determined.

Substituting (13) into both sides of (6) gives

∞∑
n=0

ant
n =M(f(t)) +

∫ t

0

∞∑
n=0

ant
−µsn+µ−1ds, (14)

where M is the Maclaurin series for f(t). Evaluating the integral in the right side, gives

∞∑
n=0

ant
n =M(f(t)) +

∞∑
n=0

1

n+ µ
ant

n. (15)

Equation(15) can be written as

a0(
µ− 1

µ
) + a1(

µ

µ+ 1
)t+ a1(

µ+ 1

µ+ 2
)t2 + . . . =M(f(t)). (16)

We use equation (16) in order to evaluate the terms an, n ≥ 0 by equating the coefficients of
like powers of t, and then substituting the recurrence relation that resulted in (13) to obtain the
exact solution:
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4 Numerical Problems

In this section, we illustrate the both mentioned methods known and new problems:

Problem 1: Consider the second kind Volterra integral equation with a weakly singular kernel
(Wazwaz & Rach, 2016)

φ(t) = 1 + t+ t2 +

∫ t

0

sµ−1

tµ
φ(s) t ∈ [0, T ]. (17)

i. Using ADM

Applying relations (9) gives
φ0(t) = 1 + t+ t2,

φn+1(t) =

∫ t

0
t−µsµ−1φn(s)ds, n ≥ 0

which will lead to the determination of the components φn+1(t) of φ(t) as follows

φ1(t) = t−µ

∫ t

0
sµ−1φ0(s)ds =

1

µ
+

1

µ+ 1
t+

1

µ+ 2
t2,

φ2(t) = t−µ

∫ t

0
sµ−1φ1(s)ds =

1

µ2
+

1

(µ+ 1)2
t+

1

(µ+ 2)2
t2,

φ3(t) = t−µ

∫ t

0
sµ−1φ2(s)ds =

1

µ3
+

1

(µ+ 1)3
t+

1

(µ+ 2)3
t2

and so on.
This leads to the series

φ(t) = (1 +
1

µ
+

1

µ2
+

1

µ3
+ . . .)+

(
1

µ+ 1
+

1

(µ+ 1)2
+

1

(µ+ 1)3
+ . . .)t+

(
1

µ+ 2
+

1

(µ+ 2)2
+

1

(µ+ 2)3
+ . . .)t2.

(18)

It is clear that (18) represents a geometric series which in turn gives the exact solution as

φ(t) =
µ

µ− 1
+
µ+ 1

µ
t+

µ+ 2

µ+ 1
t2. (19)

Notice that all of the geometric series converge if | 1µ | < 1,| 1
µ+1 | < 1,| 1

µ+2 | < 1 respectively, and
this is justified because µ > 1 as given in eq. (1). Thus the restriction is on the value of the
parameter µ in the specified domain. As stated earlier, although this equation is linear, an
infinite set of solutions may exist. It was shown in Wazwaz & Rach (2016) that other solutions
for this equation exist in the form

φ(t) =
µ

µ− 1
+
µ+ 1

µ
t+

µ+ 2

µ+ 1
t2 + α, t1−µ (20)

where α is an arbitrary constant. It is obvious that solution (26) is contained in the generalized
solution (20) for α = 0.
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ii. Using SSM

The Maclaurin series is given as

φ(t) =
∞∑
n=0

ant
n = a0 + a1t+ a2t

2 + a3t
3 + . . . (21)

Substituting (21) into (17) yields

∞∑
n=0

ant
n = 1 + t+ t2 +

∫ t

0

∞∑
n=0

ant
−µsn+µ−1ds. (22)

Evaluating the integral in the right side, gives

∞∑
n=0

ant
n = 1 + t+ t2 +

∞∑
n=0

1

n+ µ
ant

n. (23)

Equation(23) can be written as

a0(
µ− 1

µ
) + a1(

µ

µ+ 1
)t+ a1(

µ+ 1

µ+ 2
)t2 + . . . = 1 + t+ t2. (24)

Equating the coefficient of like powers of t in both sides of (24) gives

a0 =
µ

µ− 1
, a1 =

µ+ 1

µ
t , a2 =

µ+ 2

µ+ 1
t2 ; an = 0, n ≥ 3. (25)

Substituting (25) into (21) gives

φ(t) =
µ

µ− 1
+
µ+ 1

µ
t+

µ+ 2

µ+ 1
t2 (26)

which is the exact solution.
As stated above, the restriction is on the value of the parameter µ and there is no corresponding
restriction on values of t in the specified domain.

Problem 2: Consider the second kind Volterra integral equation with a weakly singular kernel

φ(t) = 1 +
t

2!
+
t2

3!
+
t3

4!
+
t4

5!
+
t5

6!
+

∫ t

0

sµ−1

tµ
φ(s) t ∈ [0, T ]. (27)

i. Using ADM

Applying relations (9) gives the recurrence relations

φ0(t) = 1 +
t

2!
+
t2

3!
+
t3

4!
+
t4

5!
+
t5

6!
,

φ1(t) =
1

µ
+

1

2!(µ+ 1)
t+

1

3!(µ+ 2)
t2 +

1

4!(µ+ 3)
t3 +

1

5!(µ+ 4)
t4 +

1

6!(µ+ 5)
t5,

φ2(t) =
1

µ2
+

1

2!(µ+ 1)2
t+

1

3!(µ+ 2)2
t2 +

1

4!(µ+ 3)2
t3 +

1

5!(µ+ 4)2
t4 +

1

6!(µ+ 5)2
t5,

φ3(t) =
1

µ3
+

1

2!(µ+ 1)3
t+

1

3!(µ+ 2)3
t2 +

1

4!(µ+ 3)3
t3 +

1

5!(µ+ 4)3
t4 +

1

6!(µ+ 5)3
t5

34



A.Sh. HASAN, S.A. MOHAMMED: TWO ANALYTIC METHODS FOR SOLVING THE VOLTERRA...

and so on.
This leads to the series solution:

φ(t) = (1 +
1

µ
+ 1 +

1

µ2
+ 1 +

1

µ3
+ . . .)+

(
1

µ+ 1
+

1

(µ+ 1)2
+

1

(µ+ 1)3
+ . . .)

t

2!
+

(
1

µ+ 2
+

1

(µ+ 2)2
+

1

(µ+ 2)3
+ . . .)

t2

3!
+

(
1

µ+ 3
+

1

(µ+ 3)2
+

1

(µ+ 3)3
+ . . .)

t3

4!
+

(
1

µ+ 4
+

1

(µ+ 4)2
+

1

(µ+ 4)3
+ . . .)

t4

5!
+

(
1

µ+ 5
+

1

(µ+ 5)2
+

1

(µ+ 5)3
+ . . .)

t5

6!

(28)

from which we can recognize the respective geometric series as the exact solution:

φ(t) =
µ

µ− 1
+
µ+ 1

2!µ
t+

µ+ 2

3!(µ+ 1)
t2 +

µ+ 3

4!(µ+ 2)
t3 +

µ+ 4

5!(µ+ 3)
t4 +

µ+ 5

6!(µ+ 4)
t5. (29)

Note that the geometric series | 1
µ+k | < 1, k = {0, 1, . . . , 5}, converge and this is justified because

µ > 1 as given in eq.(1). Thus the restriction is on the value of the parameter µ and there is
no corresponding restriction on values of t in the specified domain. As stated earlier, although
this equation is linear, an infinite set of solutions may exist for such equations. It was shown in
Wazwaz & Rach (2016) that other solutions for this equation exist in the form

φ(t) =
µ

µ− 1
+
µ+ 1

2!µ
t+

µ+ 2

3!(µ+ 1)
t2 +

µ+ 3

4!(µ+ 2)
t3 +

µ+ 4

5!(µ+ 3)
t4 +

µ+ 5

6!(µ+ 4)
t5 + αt1−µ. (30)

where α is an arbitrary constant. It is obvious that solution (42) is contained in the generalized
solution (30) for α = 0.

ii. Using SSM

Substituting the Maclaurin series (12) in (27) yields

∞∑
n=0

ant
n = 1 +

t

2!
+
t2

3!
+
t3

4!
+
t4

5!
+
t5

6!
+

∫ t

0

∞∑
n=0

ant
−µsn+µ−1ds. (31)

Evaluating the integral in the right side, and using (16) we get

a0 =
µ

µ− 1
, a1 =

µ+ 1

2!µ
, a2 =

µ+ 2

3!(µ+ 1)
, a3 =

µ+ 3

4!(µ+ 2)
,

a4 =
µ+ 4

5!(µ+ 3)
, a5 =

µ+ 5

6!(µ+ 4)
, an = 0, n ≥ 6. (32)

Substituting the components an from (32) into (13) to obtain

φ(t) =
µ

µ− 1
+
µ+ 1

2!µ
t+

µ+ 2

3!(µ+ 1)
t2 +

µ+ 3

4!(µ+ 2)
t3 +

µ+ 4

5!(µ+ 3)
t4 +

µ+ 5

6!(µ+ 4)
t5. (33)
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which is the exact solution.
As stated earlier, the restriction is on the value of the parameter µ and there is no corre-

sponding restriction on values of t in the specified domain.

Problem 3: Consider the second kind Volterra integral equation with a weakly singular kernel

φ(t) = f(t) +

∫ t

0
t−µsµ−1ds, t ∈ [0, T ], (34)

where

f(t) =
1

µ
+

1

µ2(µ2 + 1)
t+

1

µ
t3 +

1

µ3(µ3 + 1)2
t5 +

1

µ2(µ2 + 1)
t7 +

1

µ3(µ3 + 1)2
t9.

i. Using ADM

Applying relations (9) gives the recurrence relations

φ0(t) =
1

µ
+

1

µ2(µ2 + 1)
t+

1

µ
t3 +

1

µ3(µ3 + 1)2
t5 +

1

µ2(µ2 + 1)
t7 +

1

µ3(µ3 + 1)2
t9

φ1(t) =
1

µ2
+

1

µ2(µ2 + 1)(µ+ 1)
t+

1

µ(µ+ 3)
t3 +

1

µ3(µ3 + 1)2(µ+ 5)
t5+

1

µ2(µ2 + 1)(µ+ 7)
t7 +

1

µ3(µ3 + 1)2(µ+ 9)
t9

φ2(t) =
1

µ3
+

1

µ2(µ2 + 1)(µ+ 1)2
t+

1

µ(µ+ 3)2
t3 +

1

µ3(µ3 + 1)2(µ+ 5)2
t5+

1

µ2(µ2 + 1)(µ+ 72)
t7 +

1

µ3(µ3 + 1)2(µ+ 9)2
t9

φ2(t) =
1

µ3
+

1

µ2(µ2 + 1)(µ+ 1)3
t+

1

µ(µ+ 3)3
t3 +

1

µ3(µ3 + 1)2(µ+ 5)3
t5+

1

µ2(µ2 + 1)(µ+ 73)
t7 +

1

µ3(µ3 + 1)2(µ+ 9)3
t9

...
and so on.
This leads to the series solution:

φ(t) = (1 +
1

µ
+

1

µ2
+

1

µ3
+ . . .)

1

µ
+

(1 +
1

µ+ 1
+

1

(µ+ 1)2
+

1

(µ+ 1)3
+ . . .)

1

µ2(µ2 + 1)
t+

(1 +
1

µ+ 3
+

1

(µ+ 3)2
+

1

(µ+ 3)3
+ . . .)

1

µ
t3+

(1 +
1

µ+ 5
+

1

(µ+ 5)2
+

1

(µ+ 5)3
+ . . .)

1

µ3(µ3 + 1)2
t5+

(1 +
1

µ+ 7
+

1

(µ+ 7)2
+

1

(µ+ 7)3
+ . . .)

1

µ2(µ2 + 1)
t7+

(1 +
1

µ+ 9
+

1

(µ+ 9)2
+

1

(µ+ 9)3
+ . . .)

1

µ3(µ3 + 1)2
t9

(35)

from which we can recognize the respective geometric series as the exact solution:

φ(t) =
1

µ− 1
+

µ+ 1

µ2(µ2 + 1)
t+

µ+ 3

µ
t3 +

µ+ 5

µ3(µ3 + 1)2(µ+ 4)
t5 +

µ+ 7

µ2(µ2 + 1)(µ+ 6)
t7+

µ+ 9

µ3(µ3 + 1)2(µ+ 8)
t9

(36)
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As before, all of the geometric series converge. Thus the restriction is on the value of the
parameter µ and there is no corresponding restriction on values of t in the specified domain.
As stated earlier, although this equation is linear, an infinite set of solutions may exist for such
equations. It was shown in Wazwaz & Rach (2016) that other solutions for this equation exist.

ii. Using SSM

Substituting the Maclaurin series (12) in (34) yields

∞∑
n=0

ant
n = f(t) +

∫ t

0

∞∑
n=0

ant
−µsn+µ−1ds, (37)

where

f(t) =
1

µ
+

1

µ2(µ2 + 1)
t+

1

µ
t3 +

1

µ3(µ3 + 1)2
t5 +

1

µ2(µ2 + 1)
t7 +

1

µ3(µ3 + 1)2
t9.

Evaluating the integral in the right side of (37), and using (16), gives the recurrence relations

a0 =
1

µ− 1
, a1 =

µ+ 1

µ2(µ2 + 1)
,

a3 =
µ+ 3

µ(µ+ 2)
, a5 =

µ+ 5

µ3(µ3 + 1)2(µ+ 4)
,

a7 =
µ+ 7

µ2(µ2 + 1)(µ+ 6)
, a9 =

µ+ 9

µ3(µ3 + 1)2(µ+ 8)
,

a2n+1 = 0, n ≥ 5, a2n = 0, n ≥ 1.

(38)

Substituting the components an from (38) into (13) to obtain

φ(t) =
1

µ− 1
+

µ+ 1

µ2(µ2 + 1)
t+

µ+ 3

µ
t3 +

µ+ 5

µ3(µ3 + 1)2(µ+ 4)
t5+

µ+ 7

µ2(µ2 + 1)(µ+ 6)
t7 +

µ+ 9

µ3(µ3 + 1)2(µ+ 8)
t9

(39)

which is the exact solution.
As introduced earlier, the convergence concept can be followed as presented earlier in the other
problems.

Problem 4: Consider the second kind Volterra integral equation with a weakly singular kernel
(Wazwaz & Rach, 2016)

φ(t) = 1 +
(µ+ 1)2

µ(µ+ 2)
+

∫ t

0
t−µsµ−1φ(s) t ∈ [0, T ]. (40)

i. Using ADM

Applying relations (9) gives the recurrence relations

φ0(t) = 1 +
(µ+ 1)2

µ(µ+ 2)
t2

φ1(t) =
1

µ
+

(µ+ 1)2

µ(µ+ 2)2
t2

φ2(t) =
1

µ2
+

(µ+ 1)2

µ(µ+ 2)3
t2
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φ3(t) =
1

µ3
+

(µ+ 1)2

µ(µ+ 2)4
t2

...
and so on. And this leads to the series solution

φ(t) = (1 +
1

µ
+

1

µ2
+

1

µ3
+ . . .)+

(1 +
1

µ+ 2
+

1

(µ+ 2)2
+

1

(µ+ 2)3
+ . . .)

(µ+ 1)2

µ(µ+ 2)
t2

(41)

from which we can recognize the respective geometric series as the exact solution

φ(t) =
µ

µ− 1
+
µ+ 1

µ
t2. (42)

As before, all of the geometric series converge. Thus the restriction is on the value of the
parameter µ and there is no corresponding restriction on values of t in the specified domain.
As stated earlier, although this equation is linear, an infinite set of solutions may exist for such
equations. It was shown in Wazwaz & Rach (2016) that other solutions for this equation exist.

ii. Using SSM

Substituting the Maclaurin series (12) in (40) yields

∞∑
n=0

ant
n =

(µ+ 1)2

µ(µ+ 2)
t2 +

∫ t

0

∞∑
n=0

ant
−µsn+µ−1ds. (43)

Evaluating the integral in the right side of (43),and using (16), gives

a0 =
µ

µ− 1
, a1 =

µ+ 1

µ
, an = 0, n ≥ 3. (44)

Substituting the components an from (44) in (13) to obtain

φ(t) =
µ

µ− 1
+
µ+ 1

µ
t2 (45)

which is the exact solution.
As introduced earlier, the convergence concept can be followed as presented earlier in the

other problems.

5 Conclusion

In this paper, we deal the Volterra integral equation with a weakly singular kernel. Many
numerical methods such as method of non-polynomial spline function, the split interval method
and the collocation method have been used formally in order to investigate such equation. We
used in this paper two analytic methods, called the Adomian decomposition method which had
employed formally in Wazwaz & Rach (2016) and the series solution method. Both methods
show to be effective and powerful, having its own unique characteristics. We demonstrated that,
a convergent power series can be used to achieve the exact solutions in ADM through applying
variety of problems; whereas in SSM, the Maclaurin series has its own significant in solving
these problems and Speeding up the process of getting to the exact solution. We tested four
numerical problems utilizing these two ways for examining each model to confirm the power of
each strategy.
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