
Journal of Modern Technology and Engineering

Vol.7, No.3, 2022, pp.187-198

ANALYSIS OF DIFFERENT APPROACHES TO REGRESSION
PROBLEM WITH FUZZY INFORMATION

Resmiye Nasiboglu∗ ID

Department of Computer Science, Faculty of Science, Dokuz Eylul University, Izmir, Turkiye

Abstract. Approaches based on various technologies have been proposed in the literature for the creation of

regression models, which are among the most widely used models in fields such as machine learning and data

mining. In this article, various approaches such as mathematical programming, fuzzy distance-based least squares,

fuzzy c-regression, fuzzy decision trees are discussed for constructing regression models with fuzzy information.

Comparative analysis of these algorithms was made in terms of factors such as learning time, ease of processing

of fuzzy data, and the effect of large data volume.
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1 Introduction

Machine learning models are among the most used technologies recently. Among these models,
estimation models are among the most preferred models. In estimation models, they are divided
into regression and classification models depending on whether the predicted target variable
is numerical or categorical. For example, estimating the amount of insurance premium is a
regression problem. Whether a loan application is approved or not is a classification problem.
The distinction here is made only according to the target variables. Input variables can be of
any type in both problems.

Another point where estimation problems differ is that the variables are crisp and/or fuzzy.
Especially in crisp (classical) classification problems, each output state can only belong to a
single class, whereas in fuzzy classification, it can belong to different classes at the same time
with different degrees. Algorithms that can work with a fuzzy approach are generally more
robust and converge relatively faster (Nasibov & Ulutagay, 2009).

Regression analysis is a widely used methodology to analyze the relationships and correlations
between a response variable, also called a dependent variable, and one or more explanatory
variables, so called independent variables. For example, if past information is known about how
many hours a student has studied for exams and how many points he has scored, it can be
predicted a certain future exam score based on the student’s study hours.

The classical linear regression model can be expressed as:

Yi = β0 + β1Xi1 + · · ·+ βnXin + εi, for i = 1, 2, . . . ,m. (1)

Here, Yi is the value of the dependent (predicted) variable, βj , j = 0, . . . , n, are function
coefficients, Xij , are values of the independent variables, εi, are error terms. In the model, n
denotes the number of independent variables and i = 1, 2, . . . ,m, denotes the observation index.
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In the regression model, the cases where the dependent and/or independent variables can
take fuzzy values and/or the cases where the regression function is a fuzzy function are called
fuzzy regression model. Fuzzy regression models can be broadly divided into the following
categories:

� Mathematical programming (MP) based approaches;

� Fuzzy least square errors (LSE) based approaches;

� Switching regression based approaches (FcRM);

� Fuzzy decision tree (DT) based approaches.

In this study, various approaches to fuzzy regression models will be discussed. In addition
to explaining the models conceptually, their advantages and disadvantages will be mentioned.

2 Triangular fuzzy numbers and fuzzy operations

The fuzzy set is a subset defined by the membership function µ : X → [0, 1] in the universal set
X. Fuzzy numbers are one of the most widely used fuzzy set forms in problems involving fuzzy
information. Triangular fuzzy numbers (TFN) are often used in applications with fuzzy infor-
mation. We will use the TFN, which membership function can be defined as follows (Nasiboglu
& Nasibov, 2022, 2023):

Definition 1. Triangular fuzzy number A = (m, l, r) is a fuzzy number whose membership
function is as follows:

A (x) =


x−(m−l)

l , m− l ≤ x ≤ m,
(m+r)−x

r , m ≤ x ≤ m+ r,
0, x /∈ [m− l,m+ r]

(2)

Here, m is the center (location index) of the fuzzy number, l, r ≥ 0, are the left and right fuzziness
spreads, respectively (Fig. 1).

Figure 1: A = (m, l, r) representation of a triangular fuzzy number.

Arithmetic operations on fuzzy numbers and the concept of defuzzification of fuzzy numbers
have an important place in decision models based on fuzzy information. In the studies (Dubois
& Prade, 1978; Goetschel & Voxman, 1986; Maa et al., 1999; Garg, 2018; Ngan, 2021; Seresht &
Fayek, 2019), various definitions of arithmetic operations on fuzzy numbers have been proposed
and applied.

Arithmetic operations on fuzzy numbers increase the width of the resulting fuzzy number
too much. Especially when it comes to processing multiple fuzzy numbers in machine learning
algorithms, the resulting fuzzy value spreads out meaninglessly. In order to prevent this situa-
tion, the approach suggested in the studies (Maa et al., 1999; Nasiboglu & Nasibov, 2022, 2023)
can be used.
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Definition 2. The arithmetic operations on triangular fuzzy numbers A = (m1, l1, r1) and
B = (m2, l2, r2) are defined as follows:

A◦B = (m1
◦m2,max{l1, l2},max{r1, r2}), (3)

Here, “◦” can be replaced by any operation “+”, “-”, “•” or “/”.

3 Fuzzy Regression models

3.1 Mathematical Programming based approach

In mathematical programming (MP) based models, the deviation between the observed value
and the predicted value of the dependent variable can be defined as “fuzzy” and depends on the
fuzziness of the system structure. In other words, it is aimed to create a fuzzy function that its
predicted values include the observed values of the dependent variable (Figure 2).

Figure 2: Tanaka’s fuzzy regression model.

The linear programming (LP) based approach, which is a special case of MP based models,
was first discussed in Tanaka (1982). In the study, the minimum value of the total fuzzy spreads
of the coefficients was aimed as the objective function. The linear fuzzy regression model used
in the study is as follows:

Ỹi ∈ Ỹ ∗
i = Ã0 + Ã1Xi1 + · · ·+ ÃnXin, for i = 1, 2, . . . ,m. (4)

Here Ỹi = (yi, ei) , i = 1, . . . ,m, is the observed fuzzy value of the dependent variable. The Xi

values taken by the independent variables are crisp values, but the coefficients Ãj = (aj , cj), j =
0, 1, . . . , n of the regression function consist of fuzzy numbers. In this case, the predictive values
Ỹ ∗
i of the function will also be fuzzy numbers. All fuzzy numbers considered in the model are

symmetric triangular fuzzy numbers defined on the numerical axis t ∈ R1. The membership
functions of these fuzzy numbers are as follows:

Ỹi(t) = (yi, ei) =
|yi − t|

ei
, (5)

Ãj(t) = (aj , cj) =
|aj − t|

cj
. (6)

It is considered that the model proposed in (4) should satisfy the following basic conditions:

� It should minimize the total fuzzy spread of the parameters;

� The membership function of the predicted fuzzy value should include the membership
function of the observed value (Figure 3).

� There should be a threshold parameter h, which shows the extent to which the predicted
value fits the observed value (Figure 3).
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Figure 3: Estimated and observed fuzzy values.

� The fuzzy spread of a fuzzy number must not be negative.

In order to obtain the estimations of the parameters satisfying the above conditions, a linear
programming model is proposed as follows (Tanaka, 1982):

minz = c0 + c1 + · · ·+ cn, (7)

Subject to:

atxi + (1− h) ct |xi| ≥ yi + (1− h)ei, (8)

atxi − (1− h) ct |xi| ≤ yi − (1− h)ei, (9)

ci ≥ 0, i = 0, 1, . . . , n. (10)

Here, the decision variables are the vectors at and ct, which specify the centers and spreads
of the fuzzy coefficients of the regression function, respectively. Bolded at, ct and xi =
(1, x0, x1, . . . , xn) are vector values and the t sign above them indicates transpose has been
received. (8) and (9) inequalities show that the observation value remains within the h level set
of the fuzzy estimation value for h ∈ [0, 1). (10) inequalities are the condition that the fuzzy
spread values cannot be negative. The objective function in the formula (7) shows that the total
fuzzy spread value should be as low as possible. Here, the h parameter can take values between
0 and 1. The closer the value of the h parameter is to 1, the closer the model is to the classical
regression model, smaller values mean more fuzziness.

Later, the (7)-(10) model was developed and studies aiming at the minimum value of the
total fuzziness of the products of the coefficients to the independent variables were carried out
(Tanaka, 1987; Tanaka & Watada, 1988; Tanaka et al., 1989). In these studies, the constraint
inequalities did not change, only the objective function was handled as follows:

minz =
n∑

i=1

c0 + c1|xi1|+ · · ·+ cn|xin|. (11)

Various studies have also been carried out for some nonlinear cases. In the study (Tanaka
& Ishibuchi, 1991), cases where the membership functions of fuzzy numbers are not linear, and
in the study (Tanaka, 1998), the square fuzzy regression model, which minimizes the squares of
the total spreads of the predicted outputs, are discussed.

In the work (Chang & Lee, 1994a,b), solutions have been proposed for various cases of fuzzy
parameters based on the Tanaka’s approach for fuzzy regression. In later years, various other
approaches apart from MP-based fuzzy regression models were also discussed. Examples of these
models are multi-objective (MO) approaches (Nasrabadi & Nasrabadi, 2004; Nasrabadi et al.,
2005; Özelkan & Duckstein, 2000) and least square error (LSE) approaches (D’Urso & Gastaldi,
2000; Coppi et al., 2006; Chen & Hsueh, 2009).
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3.2 Fuzzy least squares based approach

Another approach to the fuzzy regression problem is models that minimize the sum of squares
of error between fuzzy prediction values and fuzzy observation values (Figure 4).

Figure 4: Fuzzy least squares model.

These models are more widely used. This approach was initiated earlier (Diamond, 1987,1988;
Yen et al., 1999; D’urso, 2003). In Diamond, (1987, 1988), regression coefficients are classical
numbers, but input X values are in the form of fuzzy numbers. Naturally, in the case of fuzzy
input, the outputs of the predictive function will also be fuzzy numbers. The aim is to mini-
mize the sum of squares error between the fuzzy predicted values, which are the output of the
function, and the actual fuzzy observation values. Various fuzzy distance measurements can be
used for this purpose (Chakraborty & Chakraborty, 2006; Nasibov, 2007; Guha & Chakraborty,
2010; Mishra et al., 2016).

In Diamond, (1987, 1988), the distance between two TFN A1 = (a1, b1, c1) and A2 =
(a2, b2, c2) is defined as follows:

D1(A1, A2) =

√
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2 (12)

In their study (Kim & Bishu, 1998), Tanaka’s and Fuzzy Least Squares (FLS) based approaches
for fuzzy regression were discussed and compared in terms of membership functions. In the
study (Yen et al., 1999), the regression model with coefficients of triangular fuzzy numbers was
considered and solutions were produced for various shapes of TFNs. (D’urso, 2003) studied the
solutions of least squares regression models in various crisp and fuzzy input/output cases.

Nasibov (2007) studied the regression model with LR-type fuzzy coefficients. The distance
between fuzzy numbers is defined using the weighted average based on levels (WABL) repre-
sentative of the fuzzy number and its weighted width. Based on this distance, a new minimum
squares regression model is proposed. The proposed model is examined for a large class of
parametric fuzzy numbers with membership degrees

max(0, 1− |x|s), (s > 0). (13)

The distance between LR-fuzzy numbers is defined as follows:

D2(A1, A2) =

√
(WABL(A1)−WABL(A2))

2 + (Width(A1)−Width(A2))
2 (14)

Here, the WABL representative and weighted width of the fuzzy number are conveniently defined
as follows:

WABL (A) =

∫ 1

0
((1− c)LA (α) + cRA (α)) p(α)dα, (15)

Width (A) =

∫ 1

0
(RA (α)− LA (α)) p(α)dα, (16)
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where, c ∈ [0, 1], is an optimism parameter, and p(α) is a distribution function of the importance
of the level sets that meets the following conditions:∫ 1

0
p(α)dα = 1, (17)

∀α ∈ [0, 1] : p(α) ≥ 0 (18)

In the article (Zhang & Lu, 2016), the regression model is discussed in the case of LR-type
fuzzy inputs and outputs. The iterative solution of the proposed model based on the weighted
least squares (WLS) estimation procedure is given. In addition, the appropriate goodness-of-fit
index and its adjusted version were defined to evaluate the performance of the proposed model.
Based on the WLS estimation procedure, robust estimation steps are given for the proposed
model. It has been demonstrated using examples that the model reduces the effect of outliers
when compared to the well-known fuzzy least squares method. In the study (Khan and Valeo,
2015), fuzzy least squares-based fuzzy linear regression model was proposed to estimate dissolved
oxygen using abiotic factors in a river environment in Calgary, Canada.

3.3 Switching regression based approach

The switching regression model, also known as the Fuzzy c-Regression Model (FcRM), was first
proposed in the study (Hathaway & Bezdek, 1993). There are applications of this approach in
many different fields (Tezel et al., 2017; Shi, 2022). This approach is a combination of the fuzzy
c-means (FCM) clustering algorithm and the regression models. In this model, it is aimed to
find a regression function in the form of

y = fi(x,βi) + εi, i = 1, .., c, (19)

that gives least square errors. We can express this regression model as Takagi-Sugeno Fuzzy
Inference System (FIS), which consists of the following rules (Figure 5):

Rule i : if x ∈ Ai then y = fi(x,βi), i = 1, ..,m. (20)

Figure 5: Switching regression model.

An iterative algorithm as follows is used to calculate Ai sets and fi(x,βi) functions in the
formula (20).

FcRM Algorithm:
Initialization steps:
Step 1. Let are given: S = {(x1, y1) , . . . , (xn, yn)} dataset; q > 1, membership power parame-
ter; For each i, let be given an error function E = {Eik} satisfying the conditions

Eik (βi) = ∥fi (xk,βi)− yk∥2, (21)

Let be given ε > 0 threshold parameter.
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Step 2. The initial membership matrix U (0) is determined, satisfying the following conditions:

0 ≤ Uik ≤ 1, ∀i, k (22)

0 <
n∑

k=1

Uik < n,∀i, (23)

c∑
i=1

Uik = 1, ∀k. (24)

Iteration steps:
The following steps are repeated for iterations r = 1, 2, . . . ,:

Step 3. Where fi (xk,βi) functions are linear functions, the parameters βi = β
(r)
i that min-

imizes the sum of errors for each model 1 ≤ i ≤ c are calculated according to the following
formula:

β
(r)
i = [XtDiX]

−1
XtDiY (25)

In the formula (25), X is the input matrix consisting of k.th row xk, and Y is the column vector

consisting of yk outputs. Di is a square matrix with diagonal elements
(
U

(r)
ik

)q
membership

degrees.

Step 4. Let be Eik = Eik(β
(r)
i ). Update the memberships matrix U (r) → U (r+1) as follows:

Uik =

 1∑c
j=1

(
Eik
Ejk

) 1
q−1

, if Eik > 0 for 1 ≤ i ≤ c; (26)

and

if ∃i : Eik = 0 then Uik = 1 and Ujk = 0, for j ̸= i. (27)

Step 5. If
∥∥U (r) − U (r+1)

∥∥ ≤ ε then stop, otherwise set r = r + 1 and goto step 3.
End.

3.4 Fuzzy Decision Tree based approach

Another common approach to regression problems is decision tree (DT) approach. Regression
models based on decision trees decompose the input space into certain regions and calculate
the average observed values in these regions. The estimated value is calculated as the weighted
average of these values. There are various regression applications of fuzzy decision trees in
the literature. In the studies (Kantarci & Nasibov, 2017, 2018), a fuzzy decision tree was
created on the linguistic data set by using the WABL defuzzification method. In the study
(Mohammadiun et al., 2021), a framework was developed that includes the development of
various integrated fuzzy decision tree regression (FDTR) models and model optimization to
facilitate the selection of appropriate response methods for oil spill accidents in Arctic waters.
In the (Xia et al., 2022), feature scanning followed by fuzzy regression tree using the Takagi-
Sugeno fuzzy reasoning (TSFRT) hypothesis is proposed. In TSFRT, each leaf node is treated
as a Takagi-Sugeno fuzzy inference system. Recently, gradient boosting models, which are new
approaches to decision trees, have come to the fore. Although approaches such as fuzzy inputs
and fuzzy partitioning are used for the gradient boosting regression (GBR) in many studies,
target variables are accepted as exact values (Sanchez & Otero, 2007) proposed a boosting-based
genetic algorithm method that can learn weighted fuzzy rules. Fuzzy logic was used to create
the basic learners. The advantages of boosting methods when training fuzzy classifiers are that
the size of the rule base is very small and learning is very fast. (Qin & Lawry, 2005) proposed a
decision tree learning model in which the leaves are appropriate tag sets in the case of linguistic
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Figure 6: Graphical representation of the FuzzyGBR algorithm.

variables. In such decision trees, probability estimates for the branches in the whole tree are
used instead of the majority class of the single branch in which the samples are included for
classification. (Nasiboglu & Nasibov, 2022, 2023), proposed a fuzzy gradient boosting algorithm
(FuzzyGBR) for cases where the observed and estimated values are in the form of triangular
fuzzy numbers (Figure 6). In this papers, the following metrics are used to calculate the distances
between the triangular fuzzy numbers A = (m1, l1, r1) and B = (m2, l2, r2):

D3(A, B) = max( |m1−m2| , |l1−l2| , |r1−r2| ), (28)

D4(A, B) = |m1−m2|+max( |l1−l2| , |r1−r2| ), (29)

D5 (A, B) = |defuz (A)−defuz (B)| , (30)

Here, the defuz() is any defuzzification method (Broekhoven & Baets, 2006; Nasibov & Mert,
2007; Nasibov & Shikhlinskaya, 2003; Veerraju et al., 2020; Nasiboglu & Abdullayeva, 2018;
Nasibov, 2003; Nasibov, 2005; Vahidi, 2019; Mert, 2020). COA, MOM, WABL defuzzification
methods are used in the study (Nasiboglu and Nasibov, 2023), and it is shown that the WABL
defuzzification method is more universal and effective.

4 Analysis and conclusion

The regression problem is one of the most widely researched problems in data analysis, data
mining and machine learning. Especially in the case of fuzzy information, the solution of this
problem includes some different approaches compared to the classical regression problem. In
this study, different approaches to the mainstream fuzzy regression models in the literature are
analyzed. Among these approaches, MP based regression models and LSE based regression
models are older approaches in the literature. LSE, FcRM and fuzzy decision tree based models
of them are the more widely used approaches. The fuzzy gradient boosting-based approach,
which is among the fuzzy decision tree models, is a relatively new approach in the literature.

The models mentioned in the study differ in terms of difficulties in processing fuzzy data,
excess of running time for training algorithms, and difficulties in the case of large volumes of
data. For example, there are many constraints in the mathematical programming approach
when there is a lot of data, which can make it difficult to solve the optimization problem. In
FcRM and fuzzy decision tree based approaches, it is better to have a lot of data and it allows to
create a more robust model. On the other hand, in fuzzy LSE and fuzzy GBR based approaches,
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Table 1: Effects of various factors on the models.

Models
Factors

MP
based
models

LSE
based
models

FcRM
based mod-
els

DM based
models

Learning time + + - -
Ease of handling
fuzzy data

- - + -

Huge size of data
volume

- - + +

when many operations are performed on fuzzy data, results with very large fuzziness occur. In
order to prevent this negativity, various restricted arithmetic operations should be applied on
fuzzy numbers (Nasiboglu and Nasibov, 2022, 2023). In the FcRM model, the fact that there is
a lot of fuzzy data does not result much negativity.

A summary of how the various factors affect the various models is given in Table 1. In the
table, the “+” sign means that the factor affects the model positively or does not cause much
problems, and the “-” sign means that it affects the model negatively.

In conclusion, we can state that regression models that can work with fuzzy information
are widely used models in the fields of machine learning and data mining. Research on these
models continues increasingly in line with new technologies developing in the field of artificial
intelligence. In future studies, we think that development of software packages for the approaches
based on these new technologies will be beneficial for researchers who do applied studies.
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