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Abstract. Fuzzy clustering algorithms are one of the most important techniques for analysing and extracting

information from data when working with datasets containing overlapping clusters. Fuzzy clustering provides

a more precise representation of complex data structures compared to conventional crisp (hard) clustering ap-

proaches. It accomplishes this by allowing data points to be assigned to multiple clusters with different degrees

of membership. This paper provides an extensive review of various fuzzy clustering algorithms, such as Fuzzy

C - Means (FCM) and its variations including Gustafson - Kessel (GK), Noise Clustering (NC), Possibilistic

C - Means (PCM), Possibilistic Fuzzy C - Means (PFCM), Credibilistic Fuzzy C - Means (CFCM), and Kernel

Fuzzy C - Means (KFCM). Their underlying mathematical theories, pseudocodes and applicability to different

types of data are reviewed. Furthermore, the time complexity of these algorithms are analysed and a detailed

comparison is presented to clarify their performance and scalability. By examining both theoretical aspects and

empirical results, this study aims to provide a comprehensive knowledge of the trade-offs between computational

efficiency and clustering accuracy. This analysis is intended to serve as a resource for researchers and practitioners

in selecting appropriate fuzzy clustering techniques for their specific applications.
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1 Introduction

Clustering algorithms are designed to partition data into classes, referred to as clusters, based on
inherent similarities and differences. The clusters formed by these algorithms are derived from
these similarities and differences, and provide valuable insights into the underlying behavior
of the data. Consequently, clustering algorithms are widely used across various disciplines,
particularly in computer science, to generate meaningful information from data.

Clustering as itself often refers to crisp (hard) clustering. In crisp clustering, each data point
belongs to only one cluster, which can lead to the improper formation of overlapping clusters
and the extraction of inaccurate information from datasets (Hartigan, 1973; Jain and Dubes,
1988).

With the introduction of Zadeh (1965)’s fuzzy set theory and the continuous development of
fuzzy clustering algorithms, more realistic clusters and more accurate insights can be produced
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from the data compared to crisp clustering algorithms. The underlying concept of fuzzy clus-
tering is that data points can belong to multiple clusters with different degrees, simultaneously.
These membership degrees should range between 0 and 1. Thus, the degree to which a data
point belongs to a particular cluster is explicitly indicated.

Although the use of fuzzy set theory in clustering algorithms was first proposed by Bellman
et al. (1966), the first fuzzy clustering algorithm was introduced by Ruspini (1969). Dunn
(1973) further developed this algorithm by incorporating a regression analysis approach, and it
was later generalized by Bezdek (1974), becoming widely known as the Fuzzy C-Means (FCM)
algorithm.

While these algorithms generally outperform crisp clustering algorithms, their performance
significantly declines in datasets containing noise and outliers. Data with noise and outliers
can undesirably shift cluster centers, leading to the generation of inaccurate information. To
overcome these challenges and determine more accurate cluster centers, different similarity and
dissimilarity metrics have been explored in fuzzy clustering algorithms.

The clusters generated by fuzzy clustering algorithms that use the Euclidean distance func-
tion are inherently spherical, which may not accurately capture the behavior of certain types of
data. To address this issue, Gustafson and Kessel (1979) proposed using of a generalized dis-
tance function, aiming to resolve this limitation. The comparison of various distance functions
for FCM algorithm has been addressed by Arora et al. (2019).

FCM algorithm performs significantly worse with noisy data. As a solution, the Noise Clus-
tering algorithm was introduced to the literature by Dave (1991). (Krishnapuram and Keller,
1993) introduced the Possibilistic C-Means (PCM) algorithm, which uses the possibility of the
data belonging to clusters as a metric for clustering. Several advanced PCM algorithms have
been analyzed in the work of Zhang and Leung (2004). The literature also includes various PCM
algorithms that integrate different methodologies to improve clustering performance (Zhang and
Chen, 2003b; Schneider, 2000; Xie et al., 2008; Zhang et al., 2017). PCM algorithm aims to
mitigate the poor results associated with noisy data. However, as outliers continued to be a
problem, Pal et al. (1997) developed a hybrid method known as Fuzzy Possibilistic C-Means
(FPCM). This method evaluated both the probability and possibility of data belonging to clus-
ters. Despite this, the FPCM algorithm did not successfully achieve its goal of delivering good
results with data with outliers. Consequently, Pal et al. (2005) updated the objective function
of FPCM and created the Possibilistic Fuzzy C-Means (PFCM) algorithm. Chintalapudi and
Kam (1998a) proposed a constant in the Credibilistic Fuzzy C-Means (CFCM) algorithm that
reduces membership values for outlier data when calculating the weights of the data.

While the FCM algorithm can perform well on linearly separable datasets, it may not yield
accurate results on non-linear, and high-dimensional datasets. To address this issue, Giro-
lami (2002) introduced the concept of kernel-based clustering. Additionally, kernel-based fuzzy
clustering algorithms have been introduced in Zhang and Chen (2003a) and Wu et al. (2003).
But, Tsai and Lin (2011) proposed a modified variance function for the Kernel Fuzzy C-Means
(KFCM) and presented a comparison with the FCM algorithm.

Similarity and dissimilarity metrics can vary in fuzzy clustering algorithms just as they do
in crisp clustering algorithms. The literature contains numerous algorithms that apply different
logics and mathematical theories. This article aims to explain in detail how some fundamental
algorithms based on different foundations are constructed and the logics they are based on.

Section 2 provides the introduction and detailed examination of aforementioned algorithms.
Section 3 introduce cluster validity indices in detail along with their pseudocodes. In Section
4, the results of cluster validity indices produced by these algorithms on both synthetically
generated datasets and real-world datasets are compared. Section 5 offers an in-depth analysis
of the findings and discusses their applicability. Finally, Section 6 concludes the article with a
summary of the main results and offers suggestions for further research.
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2 Explanation of Algorithms

Clustering algorithms involve the use of a non-linear mathematical computation. The objective
is to minimise the cost function, which includes a quadratic equation. By reducing the objective
function, the data’s membership to the clusters will improve.

Numerous approaches have been developed for specific reasons to address various difficulties
that arise in data clustering. The next subsections address some known algorithms which are
primarily associated with the FCM algorithm.

This section will use letters and symbols to describe the algorithms and pseudocodes. Through-
out the text, n denotes the number of data, d the dimension of the data (number of features),
and c the number of clusters. In addition, X(n×d) represents the data set, U(c×n) represents
the membership degrees, V(c×d) represents the cluster centres. In functions and algorithms, uij
denotes the membership degree of data j to cluster i, vi the vector of the i th cluster centre.
Similarly, m denotes the fuzziness, ε the error coefficient, and lmax the maximum number of
iterations.

The distance of the data xj from the cluster centre vi, with A being the norm matrix, is
expressed by the equation D2

ij = ‖xj − vi‖2A = (xj − vi)′A(xj − vi). When A is defined as the

unit norm matrix, D2
ij gives the squared Euclidean distance and this means that the clusters are

formed spherical. Also, using the covariance matrix will give the Mahalanobis distance function.
Unless stated otherwise, it should be understood that the squared Euclidean distance function
is used in the algorithm. Additional symbols, that are not included in this paragraph, will be
described inside the algorithm where they are utilised.

2.1 Fuzzy C-Means (FCM) Algorithm

FCM clustering algorithm is a popular algorithm used in various applications. FCM is a method
used in machine learning and data mining to partition a dataset into clusters, and it is com-
monly employed in pattern recognition and image segmentation. It is an extension of the
K-Means (Hard C-Means) clustering algorithm (Sebestyen, 1962; MacQueen et al., 1967), but
with softened assignment of data points to clusters. Influenced by Ruspini (1969) work, Dunn
(1973) created what can be considered a specific case of the FCM algorithm, using the Euclidean
norm. Later, Bezdek (1973b) generalized this situation, completing the algorithm. In 1984, it
was implemented by Bezdek et al. (1984) and became widely recognized under its current name.
In FCM, every data point belongs to each cluster, and this membership is expressed through a
value called the membership degree, which ranges between 0 and 1. This allows for more flexible
and nuanced cluster assignments.

In most clustering algorithms and FCM, the primary goal is to minimize the objective func-
tion to create a well-defined and dense data domain. The objective function for this optimization
problem is described with the equation

J =

n∑
j=1

c∑
i=1

umijD
2
ij . (1)

This function sums the squared differences between data points and cluster centers, so the
most compact clusters are found by minimizing the function. The main constraint of this
objective function is that the sum of a data point’s membership degrees across all clusters must
be equal to 1.

c∑
i=1

uij = 1 (2)

The value known as the fuzzifier, denoted as m, should be greater than 1. In FCM and most
clustering algorithms, this value is typically set to m = 2 (Bezdek, 1973b).
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As mentioned in the begining of this section, the value D2
ij indicates the Euclidean distance

function between the data point xj and the cluster center vi. The Euclidean norm used creates
spherical clusters. During the determination of membership degrees, inter-cluster information
is utilized.

uij =

 c∑
k=1

(
D2
ij

D2
kj

) 1
m−1

−1 (3)

FCM utilizes a membership degree u(x, v) for each data point xj and each cluster center
vi. When initializing the algorithm, specified constraints are applied to set up the membership
degrees appropriately. Another method for initiating the algorithm is to first assign the cluster
centers. Although this method might increase the number of iterations in some cases, if the
cluster centers are chosen properly, the iteration speed can significantly decrease.

In every iteration, membership degrees are assigned based on the distances of the data points
to the cluster centers. The objective function is calculated by aggregating the distances from
data points to the cluster centers, weighted by their membership levels. As the value of the
objective function decreases, more compact clusters are achieved. Cluster centers are formed by
calculating their weighted averages. After updating the membership degrees, cluster centers are
recalculated. This iteration continues until convergence is achieved.

vi =

n∑
j=1

umijxj

n∑
j=1

umij

(4)

The pseudocode of FCM is shown in Algorithm 1.

Algorithm 1: FCM Algorithm

Input: X, c,m, ε, lmax

1 U = random([c, n])
2 for l = 1 to lmax do

3 vi =

n∑
j=1

umijxj

n∑
j=1

umij

4 uij =

[
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

]−1
5 if ‖V l−1 − V l‖ ≤ ε then
6 Stop

Output: U, V

Generally, the time complexity of algorithms depends on the size of the data. However, the
complexity analysis presented in this article has been calculated with high precision, incorpo-
rating variables such as the number of data points, the dimensions of the data, the number of
clusters, and the number of iterations.

When the time complexity of the algorithm is calculated line by line, the result will be as
follows.

Line 1. Generating initial weight matrix would cost O(n · d · c) times. Since this process can be
precomputed outside of the algorithm, this line can be disregarded.

Line 3. When the numerator and denominator are calculated separately, the numerator costs O(n ·
d · c), and the denominator costs O(n · c).
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Line 4. If the distance function is calculated for each value, computing the membership degree
matrix will cost O(n ·d ·c2). However, if the distance matrix is calculated before computing
the membership degrees, using linear algebra tools1, the cost of computing the membership
degree matrix will be reduced to O(n · c2).

Linear algebra tools can also be utilized to calculate the centroid and membership degree
matrix, which can significantly reduce the computational cost of the algorithm. In this and
subsequent algorithms, it should be assumed that the distance matrix is calculated before being
used in the respective functions.

Since these operations will stop once convergence is achieved, the number of iterations l is
used in the complexity analysis instead of the maximum number of iterations. When computed
within the loop and taking into account l iterations, the overall complexity will be

O((c+ d) · n · c · l).

2.2 Gustafson-Kessel (GK) Algorithm

GK clustering algorithm is a generalization of the FCM algorithm that uses a modified Ma-
halanobis distance function instead of the Euclidean distance function (Gustafson and Kessel,
1979). This generalization enables the GK algorithm to utilize cluster-specific fuzzy covariance
matrices, allowing it to adapt to clusters of varying shapes and orientations. This adaptability
results in more flexible and accurate clustering outcomes compared to algorithms that assume
spherical clusters. The GK algorithm has been employed across various fields due to its ability
to handle complex cluster structures effectively, and it has been adapted to meet the specific
needs of different domains (Gath and Geva, 1989; Babuka et al., 2002; Filev and Georgieva,
2010; Bas and Egrioglu, 2022).

The GK algorithm operates by minimizing the objective function in Equation (1) that mea-
sures the compactness of clusters, similar to the FCM algorithm. Unlike FCM, the modified
Mahalanobis distance function used in the GK algorithm plays a significant role in understanding
the structure of the data. This adjustment means that clusters are formed as hyper-ellipsoids
rather than spheres. The algorithm takes volume parameters (typically ρi = 1) as input for
each cluster, making it robust against changes in cluster densities and more effective at handling
datasets with overlapping clusters.

The modified Mahalanobis distance function is as described with the following equations
(Equation (5)).

Pi =

n∑
j=1

umij (xj − vi)(xj − vi)T

n∑
j=1

umij

D2
ij = (xj − vi)T (ρi det(Pi))

1
dP−1i (xj − vi)

(5)

The pseudocode of GK is shown in Algorithm 2.
The time complexity can be analyzed as follows.

Line 3. The calculation of the cluster centers is performed in the same manner as in FCM, and is
detailed in its respective section.

- Assuming the distance matrix is generated separately from the membership degree calcu-
lation, the fuzzy Mahalanobis distance function will cost O(n · c · d2 + c · d3).

1The use of linear algebra tools like ATLAS (Whaley et al., 2001) or BLAS (Whaley and Petitet, 2005) -that
are also available in Python programming packages such as Numpy Harris et al. (2020)- for matrix operations,
will significantly reduce the time complexity.
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Algorithm 2: GK Algorithm

Input: X, c, ρ,m, ε, lmax

1 U = random([c, n])
2 for l = 1 to lmax do

3 vi =

n∑
j=1

umijxj

n∑
j=1

umij

4 uij =

[
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

]−1
5 if ‖V l−1 − V l‖ ≤ ε then
6 Stop

Output: U, V

Line 4. By calculating the distance matrix separately from the membership function, the mem-
bership degree matrix will be generateda as in FCM. i.e. O(n · c2).

With the inclusion of the number of iterations, the time complexity for the GK algorithm
will be as follows.

O((n+ d) · d2 · c · l)

2.3 Noise Clustering (NC) Algorithm

NC algorithm was first introduced by Dave (1991) to address the sensitivity of FCM-based
algorithms to noise and outliers. The approach relaxes the constraint on membership degrees,
ensuring that the sum of a noise point’s memberships across all valid clusters is not forced to
equal one. This modification reduces the influence of noise and outliers on clustering results.

c∑
i=1

uij = 1− uNj

c∑
i=1

uij < 1

(6)

The NC algorithm, which has been applied across various domains (Shen et al., 2005; Rehm
et al., 2007; Murali et al., 2018), works by identifying data points that do not conform to the
defined clusters. These points are then assigned to a separate cluster known as the ”noise
cluster”. This method aims to enhance the accuracy of clustering in datasets with significant
noise.

In this approach, a noise cluster is added alongside the existing clusters, and the distance
between each data point and to noise cluster is calculated as follows (Equation (7)), where the
value of λ is typically chosen within the range of [0.005, 0.5] (Dave, 1991).

δ2 =
λ

nc

n∑
j=1

c∑
i=1

D2
ij (7)

This approach permits noise points to have very low membership values in the valid clusters.
As a result, the objective function in the NC method will be defined as shown in Equation (8).

J =

n∑
j=1

c∑
i=1

umijD
2
ij +

n∑
j=1

δ2

(
1−

c∑
k=1

ukj

)m
(8)
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The membership degree update equation for this formulation is obtained by differentiating
the NC objective function with respect to uij .

uij =

(D2
ij

δ2

) 1
m−1

+
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

−1 (9)

The first term in the denominator of the membership degree calculation function will become
large for outliers, resulting in small membership degrees for outliers across all valid clusters.

The pseudocode of NC is shown in Algorithm 3.

Algorithm 3: NC Algorithm

Input: X, c, λ,m, ε, lmax

1 U = random([c, n])
2 for l = 1 to lmax do

3 vi =

n∑
j=1

umijxj

n∑
j=1

umij

4 δ2 = λ
nc

n∑
j=1

c∑
i=1

D2
ij

5 uij =

[(
D2
ij

δ2

) 1
m−1

+
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

]−1
6 if ‖V l−1 − V l‖ ≤ ε then
7 Stop

Output: U, V

The time complexity for Noise Clustering is similar to that of FCM.

Line 3. The calculation of the cluster centers does not differ, i.e. O(n · d · c).

Line 4. Noise cluster distance calculation costs O(n · c)

Line 5. By calculating the distance matrix separately from the membership function, the mem-
bership degree matrix will be generated again with complexity O(n · c2) as in FCM.

With the inclusion of the number of iterations, the time complexity for the NC algorithm
will be as follows.

O((c+ d) · n · c · l)

2.4 Possibilistic C-Means (PCM) Algorithm

The PCM algorithm was introduced by Krishnapuram and Keller (1993) to overcome the sen-
sitivity of the traditional FCM algorithm to noise and outliers. Unlike FCM, which produces
probabilistic memberships for data points, PCM generates possibility (typicality) degrees. This
approach removes the constraint that the membership values must sum to one for each data
point, enabling more effective handling of overlapping clusters.

0 <
c∑
i=1

tij < N (10)

Here, tij is the possibility of data point x belonging to the cluster i, and T = [tij ]c×n is called
the typicality matrix.
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PCM updates the objective function of FCM to more effectively handle overlapping clusters.

J =

n∑
j=1

c∑
i=1

tmijD
2
ij +

c∑
i=1

bi

n∑
j=1

(1− tij)m (11)

The update of cluster centers is the same as in the FCM algorithm, as shown in the corre-
sponding Equation (4).

The algorithm can be initialized using either the typicality matrix or the cluster center ma-
trix; however, Krishnapuram and Keller (1993) and Barni et al. (1996) recommended initializing
the algorithm with the results obtained from the FCM algorithm.

As with other FCM-based algorithms, taking the derivative of the objective function with
respect to, in this manner, tij and setting it equal to zero will yield the typicality matrix.

tij =

1 +

(
D2
ij

bi

) 1
m−1

−1 (12)

The value bi represents the distance at which a data point’s membership value equals 0.5.
As a result, bi should be selected based on the desired bandwidth of the possibility distribution
for each cluster. If the clusters are expected to be similar, this value can be set to a similar or
identical value across all clusters.

Ideally, bi should correspond to the overall size and shape of cluster vi.

bi = λ

n∑
j=1

umijD
2
ij

n∑
j=1

umij

(13)

In practice, Equation (13) has proven to be an effective method for determining bi (Krish-
napuram and Keller, 1993). This approach ensures that bi is proportional to the average fuzzy
intra-cluster distance of cluster vi. Typically, the constant λ is set to 1.

The pseudocode of PCM is shown in Algorithm 4.

Algorithm 4: PCM Algorithm

Input: X, c, λ,m, ε, lmax

1 [U, V ] = fcm(X, c,m, ε, lmax)

2 bi = λ

n∑
j=1

umijD
2
ij

n∑
j=1

umij

3 for l = 1 to lmax do

4 tij =

[
1 +

(
D2
ij

bi

) 1
m−1

]−1

5 vi =

n∑
j=1

tmijxj

n∑
j=1

tmij

6 if ‖V l−1 − V l‖ ≤ ε then
7 Stop

Output: T, V

When calculating the time complexity of the PCM algorithm, which is initialized using
the FCM algorithm as recommended, the resulting time complexity will be lower than that of

76
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FCM. Therefore, the time complexity of PCM is upperbounded with FCM’s time complexity
O((c + d) · n · c · l). However, excluding the time complexity of the FCM algorithm, the time
complexities for each step are as follows.

Line 2. The calculation of the bandwith algorithm costs O(n · c).

Line 4. Typicality matrix requires O(n · c)

Line 5. The calculation of the cluster centers is the same as in FCM, with a time complexity of
O(n · d · c).

Including the number of iterations, without initializing function, the total time complexity
would be

O(n · d · c · l).

2.5 Possibilistic Fuzzy C-Means (PFCM) Algorithm

The PFCM algorithm is a hybrid clustering method that combines the advantages of the FCM
and PCM algorithms. Pal et al. developed PFCM to address the limitations of FCM, such as
its sensitivity to noise and outliers, and PCM, which can struggle to identify accurate cluster
prototypes in the presence of overlapping clusters (Pal et al., 2005). PFCM merges the prob-
abilistic membership model of FCM with the possibilistic typicality model of PCM, creating a
more robust and versatile clustering approach.

Although the hybrid algorithm combining FCM and PCM was first introduced by Pal et al.
(1997) with the name FPCM (Fuzzy Possibilistic C-Means), the PFCM algorithm was designed
to resolve specific issues identified in it.

While PFCM is particularly effective in handling noisy data and cases where clusters are
not clearly separable, it is crucial to carefully select the parameters cf , cp, and b. Incorrect
parameter selection can significantly degrade the clustering performance.

The PFCM algorithm aims to minimize a composite objective function that incorporates
both fuzzy membership and possibilistic typicality. A significant issue in the original FPCM
algorithm is the constraint that requires the sum of the typicality values for all data points
within a cluster to equal 1. In PFCM, this constraint on typicality values has been relaxed,
while the constraint on membership values has been retained. This adjustment results in the
objective function presented in Equation (14).

J =
n∑
j=1

c∑
i=1

(cfu
m
ij + cpt

η
ij)D

2
ij +

c∑
i=1

bi

n∑
j=1

(1− tij)η (14)

The parameter m > 1 represents the fuzziness coefficient, and η > 1 indicates the degree
of typicality. The constants cf and cp determine the relative importance of fuzzy membership
and typicality values within the objective function. The parameter bi, as described in the PCM
algorithm, is applied similarly in the PFCM algorithm.

By solving the reduced objective function using the Lagrange multiplier method, the fol-
lowing equation (Equation (15)) is derived. The PFCM algorithm calculates both the fuzzy
membership degree and the possibilistic typicality degree for the data.

The update of the membership degree follows the weight update function used in the FCM
algorithm. However, in updating the typicality degree, following the relaxation of the FPCM
constraint, the constant cp is incorporated into the function.

tij =

[
1 +

(
cp
bi
D2
ij

) 1
η−1

]−1
(15)
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In contrast to the FCM and PCM algorithms, the PFCM algorithm determines cluster centers
by averaging the weighted values, where the weights are derived from both the membership
degrees and typicality degrees, each scaled by their respective constants.

vi =

n∑
j=1

(cfu
m
ij + cpt

η
ij)xj

n∑
j=1

(cfu
m
ij + cpt

η
ij)

(16)

The pseudocode of PFCM is shown in Algorithm 5.

Algorithm 5: PFCM Algorithm

Input: X, c,m, η, cf , cp, λ, ε, lmax

1 [U, V ] = fcm(X, c,m, ε, lmax)

2 bi = λ

n∑
j=1

umijD
2
ij

n∑
j=1

umij

3 for l = 1 to lmax do

4 tij =

[
1 +

(
cp
bi
D2
ij

) 1
η−1

]−1
5 uij =

[
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

]−1

6 vi =

n∑
j=1

(cfu
m
ij+cpt

η
ij)xj

n∑
j=1

(cfu
m
ij+cpt

η
ij)

7 if ‖V l−1 − V l‖ ≤ ε then
8 Stop

Output: U, V

To calculate and understand the time complexity for the PFCM algorithm, one can refer to
the time complexity analyses of the FCM and PCM algorithms which will similarly cost

O((c+ d) · n · c · l).

2.6 Credibilistic Fuzzy C-Means (CFCM) Algorithm

The CFCM algorithm is an extension of the traditional FCM clustering algorithm, designed to
enhance clustering performance in uncertain and imprecise datasets. It incorporates elements
of both fuzzy logic and credibilistic theory.

Introduced by Chintalapudi and Kam (1998a), the CFCM algorithm is a hybrid clustering
method, which addresses the degree of typicality of data points within clusters (Chintalapudi
and Kam, 1998b; Zadeh, 1965, 1978). This integration allows the CFCM algorithm to provide a
more adaptable and flexible structure for clustering, utilizing a credibilistic approach to assign
reliability degrees.

While the CFCM algorithm is resilient to the influence of outliers and noisy data, the in-
clusion of the credibilistic term increases computational complexity. This can significantly slow
down computation, particularly when dealing with large datasets. Nevertheless, the CFCM
algorithm offers valuable insights that can aid in better interpretation and understanding of
data.
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Although the objective function in the CFCM algorithm is the same as the one used in the
FCM algorithm, the fuzzy constraint in FCM has been modified in the CFCM algorithm, as
represented by Equation (17). In the CFCM algorithm, the sum of the weights of the data
points across clusters is expected to be equal to the reliability degree ψj of the data point j.

c∑
i=1

uij = ψj (17)

According to Chintalapudi and Kam, the reliability degree is associated with the isolation
of a vector (data point) in the feature space. Based on this approach, the algorithm utilizes
the k-nearest neighbors method. The selection of the number of nearest neighbors κ is guided
by Equation (18). The integer κ represents the minimum number of data points required in
an isolated group for it to be considered a cluster. The parameter λ is relatively insensitive to
clustering results, with a recommended value of λ = 0.5.

κ = ceil(λ(n/c)), λ ∈ (0, 1) (18)

Let Y represent the vector of the κ nearest neighbors of xj .

Y κ
j = {y1j , · · · , yκj } = {yzj }κz=1, yzj ∈ X (19)

The term µj denotes the average distance from xj to its nearest neighbors.

µj =

κ∑
z=1
‖yzj − xj‖2

κ

For an outlier data x, most (or all) of its κ nearest neighbors will be ’distant’ from data x.
Conversely, a non-outlier data point is typically surrounded by many other objects, meaning its
κ nearest neighbors will be ’close’ to it. As a result, the value of µj will be high for outliers and
low for non-outliers.

In Equation (20), the µ values are normalized within the range of (0, 1) to generate the
reliability degrees of the data points. If a data point’s reliability degree is 0 (ψj = 0), it
indicates that this point is the ’least typical’ vector in the dataset, regardless of whether it is an
outlier.

ψj = 1− (µj −min(µ1, · · · , µn))

max(µ1, · · · , µn)−min(µ1, · · · , µn)
(20)

The weight calculation, updated by incorporating the reliability degree is given by

uij = ψj

[
c∑

k=1

(
‖xj − vi‖2

‖xj − vk‖2

) 1
m−1

]−1
. (21)

No modification has been proposed for the calculation of cluster centers; the function remains
the same as in the FCM algorithm.

The pseudocode of CFCM is shown in Algorithm 6.
Note that, the ψ function can be precomputed using the kNN (k-Nearest Neighbors) algo-

rithm, eliminating the need for its calculation within the main algorithm. This suggests that
the inclusion of ψ does not significantly impact the overall time complexity of the algorithm.
However, it’s important to note that the time complexity of the KNN algorithm is O(n · d · c),
while the time complexity for computing ψ is O(n). In conclusion, the time complexity of the
CFCM algorithm remains the same as that of the FCM algorithm, i.e.

O((c+ d) · n · c · l).
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Algorithm 6: CFCM Algorithm

Input: X, c, λ,m, ε, lmax

1 U = random([c, n])
2 κ = ceil(λ(n/c))
3 Y κ

j = {y1j , · · · , yκj }

4 µj =

κ∑
z=1
‖yzj−xj‖2

κ

5 ψj = 1− (µj−min(µ1,··· ,µn))
max(µ1,··· ,µn)−min(µ1,··· ,µn)

6 for l = 1 to lmax do

7 vi =

n∑
j=1

umijxj

n∑
j=1

umij

8 uij = ψj

[
c∑

k=1

(
D2
ij

D2
kj

) 1
m−1

]−1
9 if ‖V l−1 − V l‖ ≤ ε then

10 Stop

Output: U, V

2.7 Kernel Fuzzy C-Means (KFCM) Algorithm

The KFCM algorithm incorporates RBF (Radial Basis Function) kernel methods to enhance
performance in complex and non-linear datasets. The core idea behind KFCM is the use of a
kernel function that transforms the original data points into a new feature space.

Following the introduction of Girolami (2002) idea, Tsai and Lin (2011) attempted to achieve
more robust clustering by updating the variance calculation used in the RBF kernel distance
function. This demonstrates KFCM’s flexibility in selecting different kernel functions. In this
section, we utilize the KFCM algorithm developed by Tsai and Lin (2011).

However, KFCM also has certain limitations. This approach requires the computation and
storage of the kernel matrix, which can be computationally intensive, particularly for large
datasets. Additionally, selecting an appropriate kernel function and its parameters often involves
a lengthy trial-and-error process. The literature also includes numerous applications using kernel
functions and fuzzy clustering algorithms developed based on these functions (Chen and Zhang,
2004; Dhillon et al., 2004, 2007; Graves and Pedrycz, 2010; Rezaee et al., 2021; Elshenawy et al.,
2022).

To obtain the FCM objective function in a high-dimensional feature space, a kernel-based
distance function is added. Among the commonly used kernels —Polynomial, Sigmoid, and
Gaussian— Tsai and Lin preferred the Gaussian (RBF) kernel. Instead of explicitly calculating
the (Φ) value shown in the KFCM objective function in Equation (22), a mapping to the feature
space is performed. During this mapping process, the RBF kernel distance function (K(x, y))
is again utilized.

J =
n∑
j=1

c∑
i=1

umij ‖Φ(xj)− Φ(vi)‖2

‖Φ(xj)− Φ(vi)‖2 = K(xj , xj) +K(vi, vi)− 2K(xj , vi)

K(x, y) = exp

(
−
‖x− y‖2A

σ2

) (22)

Instead of using the classical sample variance value, Tsai and Lin proposed a modified vari-
ance value to better adjust the bandwidth of the kernel distance. The modified variance value
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(σ2) in the kernel function is recommended to be calculated as shown in Equation (23) (Tsai
and Lin, 2011).

v̄ =
1

n

n∑
j=1

xj

d̄ =
1

n

n∑
j=1

√
‖xj − v̄‖2

σ2 =
1

n− 1

n∑
j=1

(√
‖xj − v̄‖2 − d̄

)2

(23)

Accordingly, the update functions for cluster centers and membership degrees are as pre-
sented in Equation (24).

vi =

n∑
j=1

umijK(xj , vi)xj

n∑
j=1

umijK(xj , vi)

uij =

[
c∑

k=1

(
1−K(xj , vi)

1−K(xj , vk)

) 1
m−1

]−1 (24)

To reduce the number of iterations, the FCM centroid function is used to initialize the cluster
centers in the KFCM algorithm.

The pseudocode of KFCM is shown in Algorithm 7.

Algorithm 7: KFCM Algorithm

Input: X, c,m, ε, lmax

1 U = random([c, n])

2 v̄ = 1
n

n∑
j=1

xj

3 d̄ = 1
n

n∑
j=1

√
‖xj − v̄‖2

4 σ2 = 1
n−1

n∑
j=1

(√
‖xj − v̄‖2 − d̄

)2
5 vi =

n∑
j=1

umijxj

n∑
j=1

umij

6 for l = 1 to lmax do

7 uij =

[
c∑

k=1

(
1−K(xj ,vi)
1−K(xj ,vk)

) 1
m−1

]−1
8 vi =

n∑
j=1

umijK(xj ,vi)xj

n∑
j=1

umijK(xj ,vi)

9 if ‖V l−1 − V l‖ ≤ ε then
10 Stop

Output: U, V

Notice that, the modified sample variance can be precomputed. As with the algorithms
discussed in this article, the distance function can be precomputed before applying the desired
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function, such as the squared Euclidean distance function within a kernel function. However,
calculating the exponential of each data point’s distance to a cluster will take slightly longer.

After incorporating the exponential calculation, the time complexity for the KFCM algorithm
can be expressed as follows.

O((c+ 2n · d) · n · c · l)

3 Cluster Validity

Clustering validity indices are used to assess the quality and validity of clustering algorithm re-
sults. These indices help evaluate how well the clustering structure reflects the natural grouping
in the data. For fuzzy clustering, traditional crisp clustering validity indices are not directly ap-
plicable due to the probabilistic nature of memberships. Therefore, specific validity indices have
been developed for fuzzy clustering algorithms, each focusing on different aspects of clustering
quality. See the most prominent indices in the literature in (Bezdek and Pal, 1998; Pakhira
et al., 2004; Wu and Yang, 2005; Wang and Zhang, 2007).

Indices such as the Partition Coefficient, Partition Entropy, Xie-Beni Index, and Fuzzy
Silhouette Index provide quantitative measures of clustering quality, aiding researchers and
practitioners in assessing the effectiveness of the clustering algorithm’s results. Each index offers
unique insights into different aspects of the clustering structure, making them indispensable for
a comprehensive understanding of the underlying patterns in the data. Using these indices
together enables a robust evaluation and facilitates the determination of the most appropriate
clustering configuration.

Note that, in the CFCM algorithm, when calculating the reliability degree, min-max normal-
ization results in membership degrees that can take on a value of 0. As a result, the calculation
of Partition Entropy and Fuzzy Silhouette indices yields invalid results when encountering a 0
value. Therefore, the CFCM algorithm does not have values listed in the Partition Entropy and
Fuzzy Silhouette index tables.

3.1 Partition Coefficient

The Partition Coefficient (PC) index, introduced by Bezdek (1973a), is one of the simplest and
earliest clustering validity indices designed specifically for fuzzy clustering. It measures the
degree of fuzziness in the clustering result and is used as an indicator of cluster compactness.

PC =
1

n

n∑
j=1

c∑
i=1

u2ij (25)

A PC value approaching 1 indicates that the clustering result resembles a crisp partitioning,
where most data points have high membership values (close to 1) for a specific cluster and low
membership values (close to 0) for all other clusters. This suggests the presence of distinct
clusters with minimal uncertainty.

3.2 Partition Entropy

The Partition Entropy (PE) index, also designed by Bezdek (1975), is used to measure the
fuzziness in the clustering result. It observes the entropy, or uncertainty, associated with the
membership values of data points.

PE = − 1

n

n∑
j=1

c∑
i=1

uij loga(uij) (26)
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A PE value approaching 0 indicates that the entropy is decreasing. This suggests that data
points have high membership values for one cluster while having low membership values for
other clusters. Consequently, this indicates that the clusters are well-defined with little to no
overlap between them.

Although the PE index is one of the most commonly used indices for comparing different
fuzzy clustering results, it is influenced by the number of clusters, similar to the PC. As a result,
while PE provides valuable insights into the fuzziness of membership values in the data, it does
not address the separation between clusters or the compactness of the clusters themselves.

3.3 Fuzzy Silhouette

The Fuzzy Silhouette Index (FS) is an extension of the traditional silhouette index(Rousseeuw,
1987), adapted for use with fuzzy clustering. Multiple adaptations of the FS index can be found
in the literature (Pakhira et al., 2004; Campello and Hruschka, 2006; Rawashdeh and Ralescu,
2012; Bezdek et al., 2016). However, this paper discusses the generalized intra-inter silhouette
index and, following Bezdek’s example (Bezdek et al., 2016), refers to it as the ”fuzzy silhouette”
out of respect for the original authors.

The FS provides a measure of how similar each data point is to its own cluster compared to
other clusters, while taking into account the membership degrees inherent in fuzzy clustering.
This index helps evaluate both the compactness of clusters and their separateness (or overlap).

The distance function used for this index can vary. In the context of the paper, the value d
represents the distance between data point j and data point k, rather than the distance between
data point j and cluster center i. The D value denotes the (n × n) distance matrix, which
represents the pairwise squared Euclidean distances between all data points.

D = {djk|j, k = 1, · · · , n; j 6= k}

The value aj represents the fuzzy intra-cluster distance, which is the minimum average
distance between data point j and the other data points within the same cluster, weighted by
their membership values.

aj = min
1≤i≤c


n∑
k=1

(uij ∧ uik)djk
n∑
k=1

(uij ∧ uik)

 (27)

The value bj represents the fuzzy inter-cluster distance, which is the minimum average dis-
tance between data point j and the data points in other clusters, weighted by their membership
values.

bj = min
1≤r<s≤c


n∑
k=1

(urj ∧ usk) ∨ (usj ∧ urk)djk
n∑
k=1

(urj ∧ usk) ∨ (usj ∧ urk)

 (28)

These matrix values are used to generalize the traditional silhouette index that is calculated
as follows (Equation (29)).

sj =
bj − aj

max (aj , bj)
(29)

The provided formulas can be generalized to fuzzy partitions by simply replacing the Boolean
operators used in the traditional silhouette index with their fuzzy equivalents, the fuzzy min-
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max operators. By doing so, the aj and bj values become applicable to fuzzy partitions, allowing
for the calculation of fuzzy silhouette scores. Accordingly, sj becomes a fuzzy silhouette value.

FS =
1

n

n∑
j=1

sj (30)

The FS index takes values in the range of [−1, 1]. A value close to 1 indicates that the data
point is well-clustered. A value close to 0 suggests that the data point is on or near the boundary
between clusters. However, if the FS value approaches −1, it indicates that the data point has
been misclassified into the wrong cluster.

3.4 Xie-Beni

The Xie-Beni Index (XB) (Xie and Beni, 1991) combines the characteristics of cluster compact-
ness and separation into a single measure, allowing for the evaluation of the overall quality of
a clustering solution. In its calculation, it suggests dividing the classic FCM objective function
by the minimum distance between cluster centers.

XB =

n∑
j=1

c∑
i=1

umij ‖xj − vi‖2

n min
1≤i 6=k≤c

{‖vk − vi‖2}
(31)

The use of the FCM objective function, which includes the Euclidean distance as a distance
metric, can influence the XB index, thereby affecting the evaluation of clustering quality. As
a result, despite its widespread use in the literature, the XB index, like the FCM algorithm, is
sensitive to outliers.

Employing each technique’s specific objective function could be beneficial for comparing
results across different datasets. However, this would make comparisons between different tech-
niques potentially biased. In this paper, the FCM objective function was used for the XB index
across all techniques and datasets to maintain consistency.

4 Computational Experiments

This article includes an experiment that evaluates the efficency of the algorithms that are de-
scribed. Each of these algorithms rely on distinct mathematical foundations and are designed to
handle specific types of data. Therefore, the performance of algorithms on on different datasets
to produce valid results. Various cluster validity indices are used to measure the efficency and
quality of clustering results. These indices help determine the optimal number of clusters, assess
the compactness and separation of clusters, and ensure that the clustering results are meaning-
ful and useful. In order to ensure a reliable comparison, the algorithms were tested on various
datasets and cluster validity indices within the same computational environment.

This section provides a description of the computational environment, algorithm parameters,
and datasets that used and shows performance.

4.1 Computational Environment

The algorithms were implemented in the Visual Studio Code development environment using
the Python programming language (v. 3.12.4) and its libraries Numpy(v. 2.0.1)Harris et al.
(2020), Scikit-Learn (v. 1.5.1)Pedregosa et al. (2011), and Matplotlib(v. 3.9.1)Hunter (2007).
The experiments were run on a 64-bit Arch Linux operating system installed on a machine built
with a Zen4-based 16-core AMD RyzenTM 9 7945HX processor using CISC architecture.
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4.2 Algorithm Parameters

The parameters for the algorithms were defined once and used consistently across all experi-
ments. For all algorithms, set the fuzziness coefficient m = 2, the tolerance ε = 0.0001, and
the maximum number of iterations, served as a stopping criterion, lmax = 10000. Given that
the experimental datasets were not large and tests concluded with low iterations, this value was
deemed sufficient. However, for real and large datasets, this maximum iteration value may be
too high and should be adjusted by the user based on the specific dataset and algorithm being
used.

In the GK algorithm, set ρ = 1[1×c], for the NC algorithm λ = 0.25, for the PCM algorithm
λ = 1 , for the PFCM algorithm cf , cp = 0.5 and λ = 1 , and finally, for the CFCM algorithm
λ = 0.5. These values were applied consistently across all datasets.

4.3 Datasets

Current clustering techniques are in the developmental stage of research, and the known ap-
proaches cannot simultaneously address all of the challenges of the datasets detailed in Nagy
(1968). Datasets similar to those described in Nagy (1968) (Figure 1) were created manually
using the Numpy and Scikit-Learn packages.

Noisy Circles Noisy Moons Aniso Varied Blobs

Figure 1: The datasets manually generated based on Nagy (1968) work.

In addition to these, commonly used datasets from MIT (Figure 2), such as Iris (Fisher,
1988), Wine (Aeberhard and Forina, 1991), and Breast Cancer (Wolberg et al., 1995), were also
utilized.

Iris Wine Breast Cancer (Diagnostics)

Figure 2: MIT Datasets

Comparing the experiments on both real and synthetic data is beneficial for diversifying
the types of data used. This approach allows for an impartial comparison of the strengths and
weaknesses of the techniques presented in the article. Details regarding the datasets utilized are
provided in Table 1.

4.4 Performance Analysis

During the experiment, every algorithm is executed 100 times for each dataset, and the average
of the validity results can be found in the cluster validity index tables, that are Table 2,3,4, and
5.
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Table 1: Data, feature and cluster sizes of the datasets

n d c

Noisy Circles 500 2 2
Noisy Moons 500 2 2

Aniso 500 2 3
Varied 500 2 3
Blobs 500 2 3
Iris 150 4 3

Wine 178 13 3
Breast Cancer 569 30 2

Table 2: Partition Coefficient Index (↑)

N. Circles N. Moons Aniso Varied Blobs Iris Wine B. Cancer

FCM 0.6946 0.7750 0.7485 0.8417 0.8267 0.7834 0.7909 0.8969
GK 0.5030 0.5152 0.5178 0.5341 0.5155 0.3333 0.3333 0.5000
NC 0.2513 0.3250 0.5529 0.6913 0.6092 0.6007 0.6317 0.5371

PCM 0.4644 0.3774 0.4658 0.6971 0.4142 0.4909 0.7681 0.9844
PFCM 0.7659 0.6049 0.6955 0.6711 0.5932 0.6930 0.7462 1.0765
CFCM 0.4155 0.5673 0.6693 0.7407 0.7119 0.5921 0.7527 0.8735
KFCM 0.5384 0.5573 0.4710 0.4063 0.4076 0.4257 0.6306 0.7174

Table 3: Partition Entropy Index (↓)

N. Circles N. Moons Aniso Varied Blobs Iris Wine B. Cancer

FCM 0.4651 0.3685 0.4513 0.3030 0.3440 0.3955 0.3804 0.1809
GK 0.6901 0.6779 0.8451 0.8217 0.8548 1.0986 1.0986 0.6931
NC 0.4996 0.4775 0.4856 0.3360 0.4073 0.4509 0.4055 0.3581

PCM 0.6522 0.6343 0.7020 0.4331 0.5990 0.6281 0.6482 0.3591
PFCM 0.5657 0.5751 0.7239 0.6178 0.6694 0.6520 0.6981 0.3702
CFCM - - - - - - - -
KFCM 0.6477 0.6251 0.8951 0.9914 0.9906 0.9662 0.6502 0.4281

Table 4: Fuzzy Silhouette Index (↑)

N. Circles N. Moons Aniso Varied Blobs Iris Wine B. Cancer

FCM 0.1823 0.2943 0.4242 0.4984 0.4897 0.4536 0.4526 0.4003
GK 0.0233 0.0495 0.2106 0.3047 0.2727 0 0 0
NC 0.2124 0.3045 0.4397 0.5076 0.4962 0.4552 0.4678 0.2777

PCM 0.0002 0.0006 0.2934 0.4415 0.4303 0.3455 0.0969 0.1398
PFCM 0.0620 0.2032 0.3145 0.4390 0.3887 0.3652 0.3372 0.2100
CFCM - - - - - - - -
KFCM 0.0351 0.0561 0.0594 0.0509 0.0517 0.0551 0.2364 0.1377

Table 5: Xie-Beni Index (↓)

N. Circles N. Moons Aniso Varied Blobs Iris Wine B. Cancer

FCM 0.3401 0.1226 0.1709 0.0645 0.0790 0.1369 0.1257 0.0597
GK 692 4.5553 0.8600 0.1867 0.2884 1.44e10 2.28e16 1.68e16
NC 0.0529 0.0344 0.0976 0.0351 0.0456 0.0977 0.0749 0.0710

PCM 3.54e5 3.72e4 978 26 0.0466 6.78e4 14 19
PFCM 1.5268 0.1816 0.4401 0.0936 0.0837 0.3882 0.2794 0.9777
CFCM 0.1775 0.0816 0.1441 0.0403 0.0588 0.1738 0.1059 0.0521
KFCM 0.6169 0.5721 1.8270 2.3149 3.6404 2.2192 0.5574 1.4598
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The execution times for the experiments, which were run on the machine detailed earlier,
are provided in Table 6. The reported times are in seconds. Each algorithm was executed 100
times, and the average execution times were recorded.

Table 6: Performance Times (sec)

N. Circles N. Moons Aniso Varied Blobs Iris Wine B. Cancer

FCM 0.4961 0.0202 0.0570 0.0471 0.0378 0.0194 0.0534 0.0594
GK 5.1231 2.6193 2.7427 1.5053 2.4449 0.1843 0.1762 0.4426
NC 0.3659 0.0793 0.0901 0.0714 0.0633 0.0307 0.0797 0.1940

PCM 0.5260 0.1461 0.2325 0.1131 0.0861 0.0378 0.1633 0.1181
PFCM 0.5899 0.0460 0.1208 0.1055 0.0677 0.0392 0.1070 0.2280
CFCM 0.1525 0.0429 0.0762 0.0640 0.0580 0.0223 0.0495 0.2723
KFCM 1.4765 8.8256 1.1679 1.2252 1.5315 0.3671 0.7208 1.0025

The visual clustering results of the algorithms across different datasets are provided in Fig-
ure 3. These visualizations illustrate how each algorithm clusters the data, allowing for a com-
parative analysis of their performance on various datasets. Different colors represent different
clusters and the opacity indicates the membership degree, such that the dots are more opaque
if their degree is high and more transparent if otherwise.

Figure 3: Visualization of results

FCM GK NC PCM PFCM CFCM KFCM

5 Results and Discussion

When examining the tables, it is evident which algorithm yields better results based on the
clustering validity index values. However, when considering the compatibility of fuzzy clustering
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algorithms with specific datasets, even various validity indices may not accurately reflect an
algorithm’s performance. One contributing factor to this is the choice of parameters.

The selection of parameters must be appropriate for both the desired algorithm and the
dataset; otherwise, the results may not meet expectations. For example, when reviewing all the
validity indices, it can be observed that the algorithm providing the best results for the Aniso
dataset varies across different indices. This indicates that the ”best” algorithm might differ
depending on the specific index used, highlighting the importance of careful parameter selection
and the potential for variability in algorithm performance across different datasets.

Figure 4: FCM and GK algorithms visual results for Aniso dataset

FCM GK

However, when examining Figure 4, it can be visually observed that the GK algorithm,
despite achieving nearly the worst results across all indices, still manages to produce the desired
cluster alignment. This highlights that while validity indices are crucial for evaluating the
performance of a fuzzy clustering algorithm, the importance of appropriate parameter selection
and cluster compatibility should not be overlooked. The visual outcomes suggest that even with
poor index scores, an algorithm like GK can still deliver acceptable clustering results when the
parameters and data characteristics align well.

Nonetheless, there are some clear conclusions that can be drawn about the algorithms.
First, the first five datasets —Noisy Circles, Noisy Moons, Aniso, Varied, and Blobs— are
manually generated and feature distributions that are challenging to cluster. The first two
datasets, in particular, have structures that are difficult to detect using C-means type clustering
algorithms. C-means type algorithms typically rely on the Euclidean distance function, which
tends to produce spherical clusters. As a result, for the first two datasets, where the clusters
overlap, the clustering results are not realistic. This is because the inherent circular or crescent-
shaped structures in these datasets are not well-suited to the assumptions made by C-means
algorithms, leading to poor clustering performance. There are algorithms in the literature
that are better suited for clustering data with these types of structures. These algorithms are
specifically designed to handle complex, non-spherical, or overlapping cluster shapes, providing
more accurate and realistic clustering results for such challenging datasets (Dave, 1990; Ester
et al., 1996; Nasibov and Ulutagay, 2007; Balakumaran et al., 2010; Nasibov et al., 2015; Bie
et al., 2016; Schubert et al., 2017).

In addition, the last three datasets —Iris, Wine, and Breast Cancer— are real-world datasets,
and analyzing their results provides a more effective comparison of the performance of clustering
functions. These three datasets exhibit various characteristics desirable in the experimental
phase, such as noise, outliers, high dimensionality, and large size. The results are consistent
across both clustering validity indices and graphical representations.

As expected, the NC algorithm, which is designed to perform well with noisy data, produced
the best results on the Breast Cancer dataset, which has a noisy structure. Additionally, the
KFCM algorithm performed well due to its effectiveness with high-dimensional data, although
it fell behind PCM and PFCM due to its sensitivity to noise.

When examining the performance times, a clear pattern emerges, as previously mentioned.
Due to the complexity of calculating the distance function, the KFCM and GK algorithms took
significantly longer to execute compared to other algorithms, as seen in the performance time
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table.

Lastly, one of the most important points to be drawn from these visual results is not just the
accuracy of the fuzzy clustering algorithm in assigning data to the correct group, but also the
variations in the information that can be derived from the dataset. As observed, most C-means
algorithms generally have a high accuracy rate in cluster assignment. However, it is crucial to
consider how strongly the data points belong to their respective clusters. By utilizing different
algorithms on the same dataset, diverse insights can be generated, highlighting the different
interpretations and information that each algorithm can extract.

6 Conclusion

In this study, a comprehensive comparison of seven different fuzzy clustering algorithms, each
based on different mathematical foundations, was performed using eight datasets and four cluster
validity indices.

The findings show the performance of various algorithms across diverse datasets, identifying
their respective strengths and limitations. The experiments conducted on the eight datasets of
varying structures facilitated an assessment of the algorithms’ adaptability to different dataset
types.

The analysis demonstrated that the structural characteristics of datasets significantly influ-
ence the effectiveness of clustering algorithms. The four cluster validity indices employed in this
study were integral to the performance assessment of the algorithms. The results indicate that
each index exhibits varying levels of sensitivity depending on the specific algorithm and dataset
involved.

This study highlights the critical importance of selecting appropriate fuzzy clustering algo-
rithms and cluster validity indices. Future research should consider the inclusion of additional
datasets and validity indices to achieve a more comprehensive understanding of algorithmic
performance. This comparative analysis provides valuable guidance for selecting suitable fuzzy
clustering algorithms and cluster validity indices in data mining and machine learning applica-
tions.
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