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1 Introduction

In this paper, we focus on the initial value problem of special third-order ordinary differential
equations in the following form

y′′′(x) = f(x, y), y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0 , (1)

where y ∈ Rq, f : R×Rq → Rq and the first and second derivatives are not appear in Equation
(1). This type problems can be occur in physical problems such as thin film flow and elecro-
magnetic waves. The Equation (1) can be solved by converting into a system of first order
ordinary differential equations. But this way causes to increase the computational time. Many
researchers have studied for solving (1) directly (Awoyemi & Idowu, 2005; Waeleh et al., 2011;
You & Chen, 2013; Mechee et al., 2013). This gains to efficiency of the method.

Recently, to increase the accuracy of the Runge-Kutta type methods derived to directly solve
special third-order ordinary differential equations (1) the fourth-order derivative of the solution
has been used in the formulation of the method. These methods are called as two-derivative
Runge-Kutta type (TDRKT) methods. Also, there are methods based on FSAL properties which
directly solve higher order ordinary differential equations. Embedded explicit Runge-Kutta type
methods for directly solving special third-order ordinary differential equations have been given
by Senu et al. (Senu et al., 2014). Extended RKN methods with FSAL property for numerical
integration of perturbed oscillators have been presented in (Fang et al., 2010). Exponentially
fitted Runge–Kutta–Nyström methods for the numerical integration of second-order IVPs with
oscillatory solutions have been derived in (Franco, 2004). In this study, we present a fourth-
order explicit two-derivative Runge-Kutta type method with FSAL property for directly solving
special third-order ordinary differential equations (1). The organization of the remainder of this
paper is as follows. In Section 2, we give the preliminaries of TDRKT methods. In Section 3, we
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derive two-derivative Runge-Kutta type methods of order four in three stages has the property
of FSAL. In Section 4, the stability of the proposed method is analyzed. In Section 5, numerical
examples are given to demonstrate the superiority of the proposed method compared with the
other Runge-Kutta methods. Lastly, conclusion is presented in Section 6.

2 The Explicit TDRKT Methods

We consider the s-stage explicit TDRKT methods derived by Lee et al. (Lee et al., 2020) in the
following form

yn+1 = yn + hy′n +
1

2
h2y′′n +

1

6
h3f(xn, yn) + h4

s∑
i=1

b′′i g(xn + cih, Yi, Y
′
i ),

y′n+1 = y′n + hy′′n +
1

2
h2f(xn, yn) + h3

s∑
i=1

b′ig(xn + cih, Yi, Y
′
i ) (2)

y′′n+1 = y′′n + hf(xn, yn) + h2
s∑

i=1

big(xn + cih, Yi, Y
′
i ),

where yiv(x) = g(x, y, y′) = fx(x, y) + fy(x, y)y′ and

Y1 = yn,

Y ′1 = y′n,

Yi = yn + hciy
′
n +

1

2
h2c2i y

′′
n +

1

6
h3c3i f(xn, yn) + h4

i−1∑
j=1

aijg(xn + cjh, Yj , Y
′
j ), i = 2, . . . , s (3)

Y ′i = y′n + hciy
′′
n +

1

2
h2c2i f(xn, yn) + h3

i−1∑
j=1

âijg(xn + cjh, Yj , Y
′
j ), i = 2, . . . , s.

The explicit TDRKT methods (2)-(3) include one evaluation of third derivative (f) and many
evaluations of fourth derivative (g). The TDRKT methods can be expressed by Butcher tableau
as follows

c A Â

b′′T b′T bT

As given in (Lee et al., 2020), the order conditions for TDRKT methods up to order five are
listed as in the following:
Order 2:

s∑
i=1

bi =
1

2
, (4)

Order 3:
s∑

i=2

bici =
1

6
,

s∑
i=1

b′i =
1

6
, (5)

Order 4:
s∑

i=2

bic
2
i =

1

12
,

s∑
i=2

b′ici =
1

24
,

s∑
i=1

b′′i =
1

24
, (6)
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Order 5:

s∑
i=2

bic
3
i =

1

20
,

s∑
i=2

i−1∑
j=1

biâij =
1

120
,

s∑
i=2

b′ic
2
i =

1

60
,

s∑
i=1

b′′i ci =
1

120
. (7)

It is utilised determining coefficients of TDRKT methods the following assumption

i−1∑
j=1

âij =
c3i
6
,

i−1∑
j=1

aij =
c4i
24

, i = 2, . . . , s. (8)

3 A fourth order TDRKT method with FSAL property

In this section, we derive an explicit three-stage (s = 3) fourth order TDRKT method based
on FSAL property. This property means that the last evaluation at any integration step is the
same as the first evaluation at the next integration step. New TDRKT method has effectively
two stages cost per step except for three stages cost at the first step. The FSAL property plays
important role on the efficiency of the schemes. That is, the usage of this property has effect
to reduce computation cost. To obtain fourth order TDRKT method with FSAL property, we
solve Eqs. (4)-(6) which are equations of order conditions up to order 4 together with FSAL
conditions

c3 = 1, b′′i = a3i, b′i = â3i, i = 1, 2, b′′3 = 0 and b′3 = 0.

With simplifying assumption(8), we have two free parameters. Minimizing the fifth order error
equations, we can chosen the free parameters as c2 = 2

5 and a32 = 13
625 . The fourth order TDRKT

method with FSAL property can be given with Butcher tableau as in the following:

0 0 0

2
5

2
1875 0 4

375 0

1 313
15000

13
625 0 1

16
5
48 0

313
15000

13
625 0 1

16
5
48 0 1

8
25
72

1
36

We denominate as TDRKT4FSAL the fourth order TDRKT method with FSAL property.

4 Numerical Results

In this section, we present numerical results obtained from studies carried out on some problems
to show efficiency and accuracy of the new method. The new method with known methods
emerged in the scientific literature are compared. It is used the maximum absolute error versus
the number of function evaluations required by each method in logarithmic scale as criterion for
comparisons. The methods used in comparisons are given in the following:
TDRKT4FSAL: a three-stage fourth order TDRKT method with FSAL property derived in
Section 3.
TDRKT4: a two-stage fourth order TDRKT method derived in (Lee et al., 2020).
RK4: The classical four-stage fourth order Runge-Kutta method given in (Butcher, 2008).

Problem 4.1 We consider the nonhomogeneous linear initial value problem given in (You &
Chen, 2013)

y′′′ = y + cos(x), y(0) = 0, y′(0) = 0, y′′(0) = 1.

The exact solution of the problem is y(x) = 1
2e

x− 1
2(cos(x) + sin(x)). The problem is integrated

in the interval [0,10] with the step sizes h = 1/2i, i = 3, . . . , 7.
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Figure 1: Efficiency curves for Problem 4.1

Figure 1 presents the efficiency curves.
Problem 4.2 We consider the nonlinear initial value problem given in (Lee et al., 2020)

y′′′ = −6y4, y(0) = 1, y′(0) = −1, y′′(0) = 2.

The exact solution of the problem is y(x) = 1
1+x . The problem is integrated in the interval [0,5]

with the step sizes h = 1/2i, i = 4, . . . , 8. Figure 2 presents the efficiency curves.
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Figure 2: Efficiency curves for Problem 4.2

Problem 4.3 We consider the linear system given in (You & Chen, 2013)

y′′′1 =
1

68
(817y1 + 1393y2 + 448y3),

y′′′2 = − 1

68
(1141y1 + 2837y2 + 896y3),

y′′′3 =
1

136
(3059y1 + 4319y2 + 1592y3),
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with the initial conditions

y1(0) = 2, y2(0) = −2, y3(0) = −12,

y′1(0) = −12, y′2(0) = 28, y′3(0) = −33,

y′′1(0) = 20, y′′2(0) = −52, y′′3(0) = 5.

The exact solution of the problem is

y1(x) = ex − 2e2x + 3e−3x,

y2(x) = 3ex + 2e2x − 7e−3x,

y3(x) = −11ex − 5e2x + 4e−3x.

The problem is integrated in the interval [0,2] with the step sizes h = 1/2i, i = 4, . . . , 8. Figure
3 presents the efficiency curves.
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Figure 3: Efficiency curves for Problem 4.3

5 Conclusion

In this paper, we derived a three-stage fourth order TDRKT method with FSAL property
(TDRKT4FSAL) for directly solving special third order ordinary differential equations. The
new method has been compared with the classical Runge-Kutta and two-derivative Runge-Kutta
type methods of the same order in terms of the number of function evaluations and the error.
The numerical results are presented in Figures 1-3. Figures 1-3 demonstrated that the new
method more efficient compared to the classical Runge-Kutta and two-derivative Runge-Kutta
type methods.
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