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Abstract.  Phase equilibria in the Cu3SbSe4-GeSe2 system were studied by differential thermal analysis 

and powder X-ray diffraction method (PXRD). It was found that in the system the Cu3SbSe4 based solid 

solutions with SbGe substitution (-phase) are formed. The extent of solid solutions is up to 15 mol.%. 

In the GeSe2-rich region phase equilibria are complex. The phase compositions of the alloys in the entire 

range of compositions of the investigated section were determined by the PXRD method: 

+Cu2GeSe3+Sb2Se3+Se (15-58 mol.% GeSe2);  Cu2GeSe3+Sb2Se3+Se (60 mol.% GeSe2); 

Cu2GeSe3+Sb2Se3+GeSe2+Se (more than 60 mol% GeSe2). 
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1.       Introduction   

 

Ternary and complex copper chalcogenides attract attention as promising 

functional materials due to their photoelectric, thermoelectric, nonlinear optical, and 

other properties (Ahluwalia, 2016; Babanly et al., 1993). In particular, copper-based 

chalcogenides p-type semiconductors, such as CuInTe2, Cu2ZnSnSe4, Cu2CdSnSe4, 

Cu3SbX4 (X = Se, S) and etc., are promising thermoelectric (TE) materials due to their 

excellent transport properties and relatively low thermal conductivity (Dou et al., 2020; 

Deng et al., 2020; Luo et al., 2015; Kosuga et al., 2014; Liu et al., 2016; Fan et al., 

2011, 2012;  Liu et al., 2012; Irfan et al., 2018). Among these phases, Cu3SbSe4 is one 

of the most studied compounds, since it has a large effective mass of carriers (i.e., high 

electrical conductivity), a small band gap, as well as widespread inexpensive and non-

toxic constituents (Shyam Prasad & Rao, 2019; Xie et al., 2018; Liu et al., 2017; Chen 

et al., 2016). Cu3SbSe4 has a famatinite crystal structure, which can be described as a 

three-dimensional Cu-Se framework of distorted [CuSe4] tetrahedra with a one-

dimensional array of inserted [SbSe4] tetrahedra. This configuration results in two 

copper positions with different Cu-Se bond lengths. This structure provides adequate 

electron transfer properties and inefficient phonon propagation (Garsia et al., 2018), 

which is an excellent property for TE applications. However, the thermoelectric figure 

of merit of Cu3SbSe4 is too low (ZT≈0.3 at 570 K (Li et al., 2015)) to use it in practice 

due to the low concentration of charge carriers and, as a consequence, poor electrical 

conductivity. Substitution doping is the best and proven strategy for changing the 

electronic structure and TE performanceof a material (Zeier et al., 2016). The optimized 
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concentration of carriers in Cu3SbSe4 in order to increase its ZT can be achieved by 

doping the Sb or Se site with some potential dopants. Recent studies have shown that 

the replacement of Sb, which is in the 5
+
 state, with elements with low valence, such as 

with IIIA (M = Al, Ga, In, Tl) and IVA (M = Si, Ge, Sn, Pb) elements significantly 

increases the concentration of hole carriers and, as a consequence, the electrical 

conductivity (Do & Mahanti, 2015; Zhao et al., 2017; Zhang et al., 2016; Ghanwat et 

al., 2016; Chang et al., 2017; Li et al., 2013). Therefore, it would be advisable to study 

the formation of substitutional solid solutions based on this compound in various 

systems containing the above dopant elements. For this reason, it is necessary to 

investigate phase equilibria in the corresponding systems (Babanly et al., 2017, 2019; 

Imamaliyeva et al., 2019, 2020). 

Earlier, in a number of works (Alverdiyev et al., 2017; Mashadiyeva et al., 2017a, 

2017b, 2020; Ismailova et al., 2019), we carried out similar studies of complex systems 

based on copper and silver chalcogenides, in which new nonstoichiometric phases were 

discovered and their primary crystallization regions were determined. 

The aim of this work was to search and study solid solutions based on the 

Cu3SbSe4 compound with SbGe substitution along the Cu3SbSe4-GeSe2 section of the 

Cu-Ge-Sb-Se system. 

The starting compounds of the studied Cu3SbSe4-GeSe2 section have been studied 

in detail. Cu3SbSe4 melts congruently at 755 K and crystallizes in a tetragonal structure 

(Sp. gr. I42m) with lattice parameters: а = b = 5.6609 (8) Å; c = 11.280 (5)Å (Pfitzner, 

1994). 

Germanium diselenide melts with an open maximum at 1015 K (Massalski, 

1990). GeSe2 crystallizes in a monoclinic structure (space group P21/c) with lattice 

parameters: а = 7.016(5) Å; b = 16.796(8) Å; c = 11.831(5) Å; β = 90.65(5)° 

(Abrikosov et al., 1969). 

 

2.      Experimental part 

For the experiments, the initial compounds Cu3SbSe4 and GeSe2 were synthesized 

by fusion of simple substances in stoichiometric ratios in evacuated to ~10
-2

 Pa and 

sealed quartz ampoules at temperatures 50° higher than the melting temperatures of the 

synthesized compounds. The ampoules with the obtained melts were kept at these 

temperatures for 3-4 hours and then cooled in the switched off furnace to room 

temperature. We used simple substances from the company EVOCHEM ADVANCED 

MATERIALS GMBH (Germany) of high purity: copper in granules (Cu-00029; 

99.9999%), antimony in granules (Sb-00002; 99.999%), Germanium pieces (Ge-00003; 

99.9999%), selenium granules (Se-00002; 99.999%). 

The individuality of all synthesized compounds was monitored by differential 

thermal analysis (DTA) and PXRD methods. The obtained values of the melting 

temperatures and the crystal lattices parameters for all synthesized compounds within 

the error limit (3 K and 0.0003 Å) were close to the above literature data. 

To carry out experiments by alloying the initial compounds under vacuum 

conditions, about 20 alloys were prepared along the Cu3SbSe4-GeSe2 section. 

According to DTA data for cast non-homogenized alloys, it was shown that their 

crystallization from melts is completed at temperatures not lower than 680 K. Taking 

this into account, to achieve a state as close as possible to equilibrium, cast alloys 

obtained by rapid cooling of melts were annealed at 650 K within 700 hours. 
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The prepared samples of the studied system were investigated by DTA and PXRD 

methods. DTA was performed on a 404 F1 PEGASUS SYSTEM differential scanning 

calorimeter (NETZSCH). The heating rate was 10 Kmin
-1

. The DTA measurement 

results were processed using the NETZSCH Proteus Software. The temperature 

measurement accuracy was within 2°. 

PXRD was carried out at room temperature on a BRUKER D8 ADVANCE 

diffractometer with CuK1 radiation. The X-ray patterns were indexed using the Topas 

V3.0 Software Bruker. 

 

3.      Results and discussion 

XRD analysis of the annealed samples showed that Cu3SbSe4-GeSe2 alloys 

containing no more than 15 mol.% GeSe2 are single-phase and have diffraction peaks 

identical to those for the pure Cu3SbSe4 compound  with a slight shift  to  the  right  

(Fig. 1). 

 

 
 

Figure 1. PXRD patterns for the Cu3SbSe4-GeSe2alloys 

 

This indicates the formation of up to 15 mol% solid solution based on the 

Cu3SbSe4 compound. The following lattice parameters were calculated by indexing 

these powder diffraction patterns: 

 

Cu3SbSe4a=5.6531 Å;        c=11.2606 Å; 

(Cu3SbSe4)0.1(GeSe2)0.9             a=5.6409 Å;        c=11.243 Å; 

(Cu3SbSe4)0.15(GeSe2)0.85          a=5.6351 Å;        с=11.2307 Å; 

 

The formation of solid solutions in the Cu3SbSe4-GeSe2 system was also 

confirmed by the DTA results (Fig. 2). However, we found that the Cu3SbSe4-GeSe2 

system is generally non-quasi-binary and is characterized by a complex interaction. The 

DTA data for alloys with a high GeSe2 content could not be interpreted. Therefore, Fig. 

2 shows a fragment of the phase diagram of the Cu3SbSe4-GeSe2 system. 
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Figure 2. A fragment of the phase diagram of the Cu3SbSe4-GeSe2 system 

 

We determined the phase compositions of the alloys in the entire range of 

compositions of the investigated section by means of PXRD method. It was found that 

in the 15-58 mol% GeSe2 compositions range alloys consist of a 4-phase mixture 

+Cu2GeSe3+Sb2Se3+Se. The alloy with a composition of 60 mol% GeSe2 is 3-phase: 

Cu2GeSe3+Sb2Se3+Se. Alloys containing more than 60 mol% GeSe2 consist of a 4-

phase mixture Cu2GeSe3+Sb2Se3+GeSe2+Se. For example, Fig. 3 shows a powder X-

ray diffraction pattern of an alloy containing 80 mol% GeSe2 with an indication of the 

phase composition. 

 

 
 

Figure 3. Powder diffraction pattern of the Cu3SbSe4-GeSe2 alloy  

with a content of 80 mol% GeSe2 

 

Based on the data obtained, it can be concluded that the Cu3SbSe4-GeSe2 section 

is located in 4-phase regionsCu3SbSe4+Cu2GeSe3+Sb2Se3+Se (area 1 in Fig. 4) and 

Cu2GeSe3+Sb2Se3+GeSe2+Se (area 2 in Fig. 4) of the concentration tetrahedron Cu2Se-

GeSe2-Sb2Se3-Se. These areas are delimited by a stable concentration triangle 

Cu2GeSe3-Sb2Se3-Se. The composition of the alloy located on the plane of this triangle 

corresponds to 60 mol% GeSe2 (point A in Fig. 4). 
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Figure 4. Concentration tetrahedron Cu2Se-GeSe2-Sb2Se3-Se 

 

4.      Conclusion 

The character of phase equilibria in the Cu3SbSe4-GeSe2 system has been 

established by DTA and PXRD methods. The formation in the system up to 15 mol% of 

solid solutions based on Cu3SbSe4 is shown. Phase equilibria in the GeSe2-rich area are 

complex and alloys consist of various heterogeneous mixtures. The obtained solid 

solutions are interesting as potential environmentally friendly functional materials. 
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