

NEW VERSION OF THE PHASE DIAGRAM OF THE MnTe- Ga₂Te₃ SYSTEM

Faik M. Mammadov^{*}

Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Abstract. The MnTe-Ga₂Te₃ system was re-investigated by differential-thermal analysis and X-ray diffraction methods and its phase diagram was constructed, which slightly differs from that previously presented in the literature. The system is characterized by the formation of the MnGa₂Te₄ compound congruently melting at 1083 K with a wide (48-58 mol.% Ga₂Te₃) homogeneity region, as well as ~ 30 mol% solid solutions based on Ga₂Te₃. MnGa₂Te₄ compound is in eutectic equilibrium (1060 K) with solid solutions based on Iow-temperature MnTe and in peritectic equilibrium with solid solutions based on Ga₂Te₃. A comparative analysis of the results obtained with the literature data was carried out.

Keywords: phase diagram, manganese-gallium tellurides, solid solutions.

Corresponding Author: Faik M. Mammadov, Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, e-mail: *faikmamadov@mail.ru*

Received: 24 May 2021; **Accepted:** 05 July 2021; **Published:** 07 August 2021.

1. Introduction

Complex chalcogenides of transition metals, in particular, compounds of the AB_2X_4 type (A-Mn, Fe, B-Ga, In, Sb, Bi, X-S, Se, Te) are important functional materials that possess magnetic, optical, photoelectric, thermoelectric, and other properties (Yang *et.al.*, 2019; Ranmohotti *et.al.*, 2015; Djieutedjeu *et.al.*, 2011; Torresa *et.al.*, 2006; Bodnar *et.al.*, 2010, 2011; Niftiyev *et.al.*, 2018; Myoung *et.al.*, 2017; Yang *et.al.*, 2019; Karthikeyan *et.al.*, 2017). Recent studies have shown that some of these compounds are magnetic topological insulators and are promising for creating ultrafast memory elements, spintronic devices, quantum computers, detectors, etc. (Klimovskikh *et.al.*, 2020; Estyunin *et.al.*, 2020; Yonghao *et.al.*, 2020; Zhou *et.al.*, 2020; Yujun *et.al.*, 2020).

The development of methods for the synthesis of new complex phases is based on reliable data on phase equilibria in the corresponding systems (Zlomanov *et.al.*, 2013; Babanly *et.al.*, 2017, 2019; Imamaliyeva *et.al.*, 2018).

To search and develop the physicochemical basis for obtaining new magnetic semiconductors, we undertook a study of phase equilibria in the AX - Ga_2X_3 - In_2X_3 systems (Mammadov *et.al.*, 2019b, 2020; Mammadov *et.al.*, 2019a) and showed the formation of wide areas of solid solutions along the AGa₂X₄ – AIn₂X₄ sections of these systems.

The preliminary experimental results obtained by us during the study of the MnTe- Ga_2Te_3 - In_2Te_3 system showed their inconsistency with the known (Babaeva *et.al.*, 1983; Rustamov *et.al.*, 1978; Garbato *et.al.*, 1993) phase diagrams of the boundary MnTe-In₂Te₃ and MnTe-Ga₂Te₃ quasi-binary systems. In (Mammadov *et.al.*, 2021), we presented the refined T - x diagram of the MnTe-In₂Te₃ system.

The present paper is aiming to obtain new data on phase equilibria in the $MnTe-Ga_2Te_3$ system.

The initial binary compounds of this system have been studied in detail (Massalski et.al., 1990; Aliev et.al., 2019; Mukherjee et.al., 1980).

MnTe compound melts at 1425 K with decomposition by a peritectic reaction and undergo polymorphic transitions at 1270 and 1305 K (Massalski *et.al.*, 1990). Low-temperature (LT) -MnTe crystallizes in a hexagonal structure (Sp.Gr. *P63/mmc*) with lattice parameters a = 0.41498 nm, c = 0.67176 nm (Aliev *et.al.*, 2019).

The Ga₂Te₃ compound melts congruently (1065 K) (Massalski *et.al.*, 1990) and crystallizes in a cubic structure (Sp.Gr.*F*-43*m*) with a lattice period a = 0.58980 nm (Mukherjee *et.al.*, 1980).

2. Experimental part

Materials and synthesis

Ga₂Te₃ and MnTe compounds were synthesized by using high-purity manganese (Mn-99.99%), indium (Ga-99.999%), and tellurium (Te-99.999%) purchased from Alfa Aesar. Stoichiometric mixtures of elementary components were placed in a quartz ampoule, which was evacuated to a residual pressure of ~ 10^{-2} Pa and sealed. The synthesis of Ga₂Te₃ was carried out at 1070 K. Taking into account the interaction of manganese with quartz, the synthesis of MnTe was carried out in a glass-graphite crucible placed in a quartz ampoule. The ampoule was heated to 1450 K and then kept at 1300 K for 10 h. Then the ampoule was cooled by turning off the furnace.

The individuality of both synthesized compounds was controlled by differentialthermal analysis (DTA) and X-ray diffraction (XRD) methods. The obtained melting temperatures and crystal lattice parameters coincided within the error limits (± 2 K and ± 0.0003 Å) with the above literature data (Massalski *et.al.*, 1990, Aliev *et.al.*, 2019, Mukherjee *et.al.*, 1980).

The alloys of the studied system were prepared by melting the initial compounds in various ratios in evacuated quartz ampoules, followed by homogenizing annealing at 900 K for 500 h.

Research methods

For the investigations, differential-thermal analysis and X-ray diffraction methods were used. DTA was performed on a Netzsch STA449 F3 device (platinum-platinum/rhodium thermocouple) in the temperature range from room temperature to ~ 1450 K at a heating rate of 10 K / min. Phase and structural studies were carried out based on powder diffraction data obtained on a D2 Phaser diffractometer using the Eva and Topas 4.2 programs (Bruker, Germany; CuK α radiation, angle interval 5 ° $\leq 2\theta \leq$ 80°, recording rate 0.03 ° / 0.2 min).

3. Results and its discussion

The powder diffraction patterns of the annealed samples are shown in Fig. 1. As can be seen, the diffraction patterns of the samples containing 40 and 60 mol% Ga₂Te₃ consist of sets of reflection lines of the phases based on LT- MnTe and MnGa₂Te₄ (α + γ) and Ga₂Te₃, MnGa₂Te₄ (β + γ) respectively. According to Fig. 1, an alloy with a composition of 50 mol% Ga₂Te₃, (MnGa₂Te₄) has an individual diffraction pattern that

is different from the initial compounds. For samples containing 55 and 70 mol% Ga_2Te_3 , the diffraction patterns are qualitatively the same for $MnGa_2Te_4$ and Ga_2Te_3 and are characterized by some shift in the reflection angles. This shows broad ranges of homogeneity based on these compounds.

The phase diagram of the MnTe- Ga₂Te₃ system was constructed using the DTA data, taking into account the XRD results (Fig. 2). As can be seen, it is non-quasi-binary due to the incongruent character of melting of the MnTe compound, but stable below the peritectic (1425 K). Liquidus consists of 4 curves of the primary crystallization of Mn, α' -, and α -solid solutions based on two modifications of MnTe, γ -phase based on MnGa₂Te₄ and β -phase based on Ga₂Te₃ (Fig. 2).

MnGa₂Te₄ compound melts congruently at 1083 K and has a wide (~49-58 mol.% Ga₂Te₃) region of homogeneity (γ -phase). This phase forms a eutectic with MnTe, which has a composition of 42 mol% Ga₂Te₃ and crystallizes at 1060 K. At a temperature of 1070 K, a β -solid solution based on Ga₂Te₃ is formed by the peritectic reaction L + $\gamma \leftrightarrow \beta$. The peritectic point (p) has a composition of 72 mol% Ga₂Te₃. On the liquidus and solidus curves of the β -phase, a minimum point (M) at 1050 K was observed.

The T-x diagram constructed by us differs significantly from those given in (Rustamov *et al.*, 1978; Garbato *et.al.*, 1993). Thus, according to (Rustamov *et.al.*, 1978), the MnGa₂Te₄ compound has an almost constant composition and melts congruently at 1118 K. The coordinates of the MnGa₂Te₄ eutectic with MnTe (38 mol% Ga₂Te₃ and 1033 K) differ significantly from our data. In addition, according to (Rustamov *et.al.*, 1978), MnGa₂Te₄ forms a eutectic with Ga₂Te₃, which was not confirmed by us.

The data (Garbato *et.al.*, 1993) on the melting point of $MnGa_2Te_4$ (1093 K) and solid-phase equilibria are close to ours, however, the T - x diagram given in this work is constructed in violation of the known provisions.

Figure 1. Diffraction patterns of some alloys MnTe-Ga₂Te₃ system

Figure 2. Phase diagram of the MnTe-Ga₂Te₃ system

4. Conclusion

Based on the DTA and XRD data of the carefully homogenized by prolonged thermal annealing samples, we obtained a new version of the T-x phase diagram of the MnTe- Ga_2Te_3 system, which differs from the two previously known variants. It was found that the MnGa₂Te₄ ternary compound melts congruently to 1083 K and has a wide homogeneity range (at 900 K from 48 to 58 mol% Ga_2Te_3). A wide range (up to 30 mol%) of solid solutions based on Ga_2Te_3 was revealed also. The new phases obtained in this work are of interest as potential magnetic materials.

References

- Aliev, Z.S., Amiraslanov, I.R., Nasonova, D.I., Shevelkov, A. V., Abdullayev, N.A., Jahangirli, Z. A., Orujlu, E. N., Otrokov, M. M., Mamedov, N. T., Babanly, M. B., & Chulkov, E. V. (2019). Novel ternary layered manganese bismuth tellurides of the MnTe- Bi₂Te₃ system: Synthesis and crystal structure. *Journal of Alloys and Compounds*, 789(15), 443-450.
- Babaeva, P.K., & Rustamov, P.G. (1983). Phase Equilibria Along The In₂Te₃- MnTe и InTe-Mn Section Of The Mn-In-Te System. *Azerb. Chem. J.*, 2, 124-127.
- Babanly, M.B., Chulkov, E.V., Aliev, Z. S., Shevel'kov, A.V., & Amiraslanov, I. R. (2017). Phase diagrams in materials science of topological insulators based on metal chalkogenides. *Russ. J. Inorg. Chem.*, 62(13), 1703–1729.
- Babanly, M.B., Mashadiyeva, L.F., Babanly, D.M., Imamaliyeva, S.Z., & Tagiev, D.B., Yusibov, Yu.A. (2019). Some issues of complex studies of phase equilibria and thermodynamic properties in ternary chalcogenide systems involving Emf measurements (Review). *Russ. J. Inorg. Chem.*, 64(13), 1649-1671.
- Bodnar, I.V., Viktorov, I.A., & Pavlyukovets, S.A. (2010). Growth, structure, and thermal expansion anisotropy of FeIn₂Se₄ single crystals. *Inorganic Materials*, *46*(6), 604-608.

- Bodnar, I.V., & Trukhanov, S.V. (2011). Magnetic properties of the FeIn₂S₄ ternary compound crystals. *Semiconductors*, *45*(7), 861-864.
- Djieutedjeu, H., Makongo, J., Rotaru, A., Palasyuk, A., Takas, N. J., Zhou, X., & Poudeu, P. F. (2011). Crystal structure, charge transport, and magnetic properties of MnSb₂Se₄. *European Journal of Inorganic Chemistry*, 26, 3969-3977.
- Estyunin, D.A., Klimovskikh, I.I., Shikin, A.M., Schwier, E. F., Otrokov, M. M., Kimura, A., Kumar, S., Filnov, S. O., Aliev, Z. S., Babanly, M. B., & Chulkov, E. V.(2020). Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi₂Te₄. APL Materials, 8(2), 021105.
- Garbato, L., Geddo-Lehmann, A., Ledda, F., Cannas, M., & Devoto, O. (1993). T(x) diagram of the $(MnTe)_{1-x}$ $(Ga2Te3)_x$ system. Jpn. J. Apl. Phys, 32, 389-390.
- Imamaliyeva, S.Z., Babanly, D. M., Tagiev, D.B., & Babanly, M.B. (2018). Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the TI5Te3 Structure: A Review. *Russ. J. Inorg. Chem.*, 63 (13), 1704-1730.
- Karthikeyan, N., Aravindsamy, G., Balamurugan, P., & Sivakumar, K.(2017). Thermoelectric properties of layered type FeIn₂Se₄ chalcogenide compound. *Materials Research Innovations*, 22(5), 278-281.
- Klimovskikh, I.I., Otrokov, M.M., Estyunin, D., Eremeev, S. V., Filnov, S. O., Koroleva, A., Shevchenko, E, Voroshnin, V., Rybkin, A. G., Rusinov, I. P., Blanco-Rey, M., Hoffmann, M., Aliev, Z. S., Babanly, M.B., Amiraslanov, I. R., Abdullayev, N. A., Zverev, V. N., Kimura, A., Tereshchenko, O. E., Kokh, K.A., Petaccia, L., Santo, G. Di, Ernst, A., Echenique, P. M., Mamedov, N. T., Shikin, A. M., & Chulkov, E.V. (2020). Tunable 3D/2D magnetism in the (MnBi₂Te₄) (Bi₂Te₃)m topological insulators family. *npj Quantum Mater.*, 5(54), 1-9.
- Mammadov, F.M., Amiraslanov, I.R., Aliyeva, Y.R., Ragimov, S.S., Mashadiyeva, L. F., & Babanly, M.B. (2019a). Phase equilibria in the MnGa₂Te₄-MnIn₂Te₄ system, crystal structure and physical properties of MnGaInTe₄. Acta Chim. Slov., 66(2), 466–472.
- Mamedov, F.M., Babanly, D. M., Amiraslanov, I. R. Tagiev, D. B., & Babanly, M. B. (2020). Physicochemical Analysis of the FeSe–Ga₂Se₃–In₂Se₃ System. *Russ. J. Inorg. Chem.*, 65(11), 1747-1755.
- Mammadov, F. M., Amiraslanov, I. R., Imamaliyeva, S. Z., & Babanly, M.B. (2019b). Phase relations in the FeSe FeGa₂Se₄–FeIn₂Se₄ system. Refinement of the crystal structures of the FeIn₂Se₄ and FeGaInSe₄. *J. Phase Equilib. Diffus.*, 40(6), 787-796.
- Mammadov, F.M. (2021). Refinement of the phase diagram of the MnTe -In₂Te₃ system. *Azerb. Chem. J.*, 2, 37-41
- Massalski, T.B. (Ed.). (1990). *Binary Alloy Phase Diagrams*, second ed., ASM International Materials, Park, Ohio.
- Mukherjee, A.K., Dhawan, U., Kundra, K.D., & Ali, S.Z. (1980). X-ray study of the airoxidised α-Ga₂Se₃ and Ga₂Te₃ powders. *Bull. Mater. Sci.*, 2(1), 55-60.
- Myoung, B.R., Lim, J.T., & Kim, C.S. (2017). Investigation of magnetic properties on spinordering effects of FeGa₂S₄ and FeIn₂S₄. *Journal of Magnetism and Magnetic Materials*, 438, 121-125.
- Niftiyev, N.N., Mamedov, F. M., Quseynov, V. I., & Kurbanov, S. Sh. (2018). AC Electrical Conductivity of FeIn2Se4 Single Crystals. *Semiconductors*, 52(6), 683-685.
- Ranmohotti, K.G.S., Djieutedjeu, H., Lopez, J. Page, A., Haldolaarachchige, N., Chi, H., & Poudeu, P. F.(2015). Coexistence of High-T c Ferromagnetism and n-Type Electrical Conductivity in FeBi₂Se₄. *Journal of the American Chemical Society*, 137(2), 691-698.
- Rustamov, P.G., Babaeva, P.K., & Ajdarova, D.S. (1978). Interaction in the Ga₂Te₃-MnTe system. *Azerb. Chem. J.*, 5, 112-114.
- Torresa, T., Sagredoa, V., L.M. de Chalbauda, Attolinib, G., & Bolzoni, F. (2006). Magnetic and structural characterization of the semiconductor FeIn₂Se₄. *Physica B*, *384*(1-2), 100-102.

- Yang, J., Zhou, Z., Fang, J. Wen, H., Lou, Z., Shen, G., & Wei, Z.(2019). Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn₂Se₄., *Appl. Phys. Lett.*, 2221019(1-4)
- Yang, J., Zhou, Z., Fang, J., Wen, H., Lou, Z., Shen, G., & Wei, Z. (2019). Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn₂Se₄. *Applied Physics Letters*, 115(22), 222101(1-4).
- Yonghao, Y., Xintong, W., Hao, L., Jiaheng, L., Yu J., Zhenqi, H., Yang, W., Ke, H., Yayu, W., Yong, X., Wenhui, D., Wei, L., & Qi-Kun Xu. (2020). Electronic states and magnetic response of MnBi₂Te₄ by scanning tunneling microscopy and spectroscopy. *Nano Lett.*, 20, 3271–3277.
- Yujun, D., Yijun, Y., Meng, Z., Zhongxun, G., Zihan, X., Jing, W., Xian, H. Ch., & Yuanbo, Z. (2020). Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. *Science*, 367(6480), 895-900.
- Zhou, L., Tan, Z., Yan, D., Fang, Z., Shi, Y., & Weng, H. (2020). Topological phase transition in the layered magnetic compound MnSb₂Te₄: Spin-orbit coupling and interlayer coupling dependence. *Physical review B*, 102, 085114.
- Zlomanov, V. P., Khoviv, A.M. & Zavrazhnov, A.Yu. (2013). Physicochemical analysis and synthesis of nonstoichiometric solids. In: *Tech. Materials Science - Advanced Topics*, 103-128.